Europe PMC

This website requires cookies, and the limited processing of your personal data in order to function. By using the site you are agreeing to this as outlined in our privacy notice and cookie policy.

Abstract 


LPS has been implicated in the pathogenesis of endothelial cell death associated with Gram-negative bacterial sepsis. The binding of LPS to the TLR-4 on the surface of endothelial cells initiates the formation of a death-inducing signaling complex at the cell surface. The subsequent signaling pathways that result in apoptotic cell death remain unclear and may differ among endothelial cells in different organs. We sought to determine whether LPS and cycloheximide-induced cell death in human lung microvascular endothelial cells (HmVECs) was dependent upon activation of the intrinsic apoptotic pathway and the generation of reactive oxygen species. We found that cells overexpressing the anti-apoptotic protein Bcl-X(L) were resistant to LPS and cycloheximide-induced death and that the proapoptotic Bcl-2 protein Bid was cleaved following treatment with LPS. The importance of Bid was confirmed by protection of Bid-deficient (bid(-/-)) mice from LPS-induced lung injury. Neither HmVECs treated with the combined superoxide dismutase/catalase mimetic EUK-134 nor HmVECs depleted of mitochondrial DNA (rho(0) cells) were protected against LPS and cycloheximide-induced death. We conclude that LPS and cycloheximide-induced death in HmVECs requires the intrinsic cell death pathway, but not the generation of reactive oxygen species.

Citations & impact 


Impact metrics

Jump to Citations
Jump to Data

Citations of article over time

Article citations


Go to all (39) article citations

Data 


Funding 


Funders who supported this work.

NHLBI NIH HHS (3)

NIEHS NIH HHS (2)

NIGMS NIH HHS (1)