Europe PMC

This website requires cookies, and the limited processing of your personal data in order to function. By using the site you are agreeing to this as outlined in our privacy notice and cookie policy.

Abstract 


We have determined the relative concentrations of ribosomes accumulated under different growth conditions for a number of translational mutants as well as for some natural isolates of Escherichia coli. The mutants are a tRNA modification mutant (miaA), a streptomycin resistant (SmR) and a streptomycin pseudodependent (SmP) mutant as well as two ribosome ambiguity (ram) mutants. The natural isolates used in this study are known to function with submaximal ribosome kinetics. The data show that for all the ribosome mutants the concentration of ribosomes relative to that in wild type bacteria increases when the growth rate decreases. A small increase is also seen in the natural isolates. In contrast, the miaA mutant shows no increase in ribosome concentration under the same slow growth conditions. The results suggest that bacteria with kinetically impaired ribosomes can to some extent increase the number of ribosomes accumulated under poor growth conditions in order to compensate for their slower function. We use this observation to explain in part how bacteria growing in natural environments can escape the strong selection for maximized growth rates and for optimized ribosomes that are characteristic of laboratory strains.

References 


Articles referenced by this article (31)


Show 10 more references (10 of 31)

Citations & impact 


Impact metrics

Jump to Citations

Citations of article over time

Article citations


Go to all (12) article citations