Europe PMC

This website requires cookies, and the limited processing of your personal data in order to function. By using the site you are agreeing to this as outlined in our privacy notice and cookie policy.

Abstract 


Type I interferons (IFNs), a family of cytokines, orchestrate numerous biological and cellular processes1, 2, 3. Although it is well known that type I IFNs are essential for establishing the host antiviral state4, their role in hematopoietic homeostasis has not been studied. Here we show that type I IFNs induce proliferation and exhaustion in hematopoietic stem cells (HSCs) and that interferon regulatory factor-2 (IRF2), a transcriptional suppressor of type I IFN signaling5, 6, preserves the self-renewal and multilineage differentiation capacity of HSCs. HSCs were substantially less abundant in the bone marrow of Irf2-/- as compared to Irf2+/- mice. Irf2-/- HSCs showed enhanced cell cycling status and failed to produce hematopoietic cells in competitive repopulation assays, and the reconstituting capacity of Irf2-/- HSCs was restored by disabling type I IFN signaling in these cells. In wild-type mice, injection of poly(I:C), an inducer of type I IFN signaling, or IFN- induced HSC proliferation, and chronic type I IFN signaling further reduced the number of quiescent HSCs. Notably, combined poly(I:C) and 5-fluorouracil (5-FU) treatment allowed exogenous HSC engraftment and hematopoietic reconstitution in WT mice. Our findings provide insight into the molecular basis for the maintenance of HSC quiescence and may lead to improvements in bone marrow transplantation and type I IFN-based therapies for viral infection and cancer.

References 


Articles referenced by this article (27)


Show 10 more references (10 of 27)

Citations & impact 


Impact metrics

Jump to Citations
Jump to Data

Citations of article over time

Alternative metrics

Altmetric item for https://www.altmetric.com/details/517678
Altmetric
Discover the attention surrounding your research
https://www.altmetric.com/details/517678

Smart citations by scite.ai
Smart citations by scite.ai include citation statements extracted from the full text of the citing article. The number of the statements may be higher than the number of citations provided by EuropePMC if one paper cites another multiple times or lower if scite has not yet processed some of the citing articles.
Explore citation contexts and check if this article has been supported or disputed.
https://scite.ai/reports/10.1038/nm.1973

Supporting
Mentioning
Contrasting
19
345
0

Article citations


Go to all (280) article citations

Data 


Similar Articles 


To arrive at the top five similar articles we use a word-weighted algorithm to compare words from the Title and Abstract of each citation.