Europe PMC

This website requires cookies, and the limited processing of your personal data in order to function. By using the site you are agreeing to this as outlined in our privacy notice and cookie policy.

Abstract 


Orthopedic implant-related bacterial infections are associated with high morbidity that may lead to limb amputation and exert significant financial burden on the healthcare system. Staphylococcus aureus is a dominant cause of these infections, and increased incidence of community-associated methicillin-resistant S. aureus (CA-MRSA) is being reported. The ability of S. aureus to attach to the foreign body surface and develop a biofilm is an important determinant of resistance to antibiotic prophylaxis. To gain insight on CA-MRSA biofilm properties, USA300 biofilm maturation and dispersal was examined, and these biofilms were found to exhibit pronounced, quorum-sensing mediated dispersal from a glass surface. For comparison of biofilm maturation on different surface chemistries, USA300 biofilm growth was examined on glass, polycarbonate, and titanium, and minimal differences were apparent in thickness, total biomass, and substratum coverage. Importantly, USA300 biofilms grown on titanium possessed a functional dispersal mechanism, and the dispersed cells regained susceptibility to rifampicin and levofloxacin treatment. The titanium biofilms were also sensitive to proteinase K and DNaseI, suggesting the matrix is composed of proteinaceous material and extracellular DNA. These studies provide new insights on the properties of CA-MRSA biofilms on implant materials, and indicate that quorum-sensing dispersion could be an effective therapeutic strategy.

References 


Articles referenced by this article (28)


Show 10 more references (10 of 28)

Citations & impact 


Impact metrics

Jump to Citations

Citations of article over time

Alternative metrics

Altmetric item for https://www.altmetric.com/details/99636633
Altmetric
Discover the attention surrounding your research
https://www.altmetric.com/details/99636633

Article citations


Go to all (120) article citations

Similar Articles 


To arrive at the top five similar articles we use a word-weighted algorithm to compare words from the Title and Abstract of each citation.


Funding 


Funders who supported this work.

NIAID NIH HHS (2)