Europe PMC

This website requires cookies, and the limited processing of your personal data in order to function. By using the site you are agreeing to this as outlined in our privacy notice and cookie policy.

Abstract 


A method is presented for the rapid determination of substrate selection in a manner that is not restricted to conditions of metabolic and isotopic steady state. Competition between several substrates can be assessed directly and continuously in a single experiment, allowing the effect of interventions to be studied. It is shown that a single proton-decoupled 13C NMR spectrum of glutamate provides a direct measure of the contribution of exogenous 13C-labeled substrates to acetyl-CoA without measurement of oxygen consumption and that steady-state conditions need not apply. Two sets of experiments were performed: one in which a metabolic steady state but a non-steady-state 13C distribution was achieved and another in which both metabolism and labeling were not at steady state. In the first group, isolated rat hearts were supplied with [1,2-13C]acetate, [3-13C]lactate, and unlabeled glucose. 13C NMR spectra of extracts from hearts perfused under identical conditions for 5 or 30 min were compared. In spite of significant differences in the spectra, the measured contributions of acetate, lactate, and unlabeled sources to acetyl-CoA were the same. In the second set of experiments, the same group of labeled substrates was used in a regional ischemia model in isolated rabbit hearts to show regional differences in substrate utilization under both metabolic and isotopic non steady state. This sensitive probe of substrate selection was also demonstrated in intact hearts where excellent time resolution (3 min) of substrate selection was feasible.(ABSTRACT TRUNCATED AT 250 WORDS)

Citations & impact 


Impact metrics

Jump to Citations

Citations of article over time

Alternative metrics

Altmetric item for https://www.altmetric.com/details/41430530
Altmetric
Discover the attention surrounding your research
https://www.altmetric.com/details/41430530

Smart citations by scite.ai
Smart citations by scite.ai include citation statements extracted from the full text of the citing article. The number of the statements may be higher than the number of citations provided by EuropePMC if one paper cites another multiple times or lower if scite has not yet processed some of the citing articles.
Explore citation contexts and check if this article has been supported or disputed.
https://scite.ai/reports/10.1021/bi00481a002

Supporting
Mentioning
Contrasting
4
136
0

Article citations


Go to all (91) article citations

Funding 


Funders who supported this work.

NHLBI NIH HHS (1)