Europe PMC

This website requires cookies, and the limited processing of your personal data in order to function. By using the site you are agreeing to this as outlined in our privacy notice and cookie policy.

Abstract 


Molecular chaperones are a ubiquitous family of cellular proteins which mediate the correct folding of other polypeptides, and in some cases their assembly into oligomeric structures, but which are not components of those final structures. Known chaperones do not possess steric information for protein folding but inhibit unproductive folding and assembly pathways which would otherwise act as dead-end kinetic traps and produce incorrect structures. Chaperones function by binding specifically and non-covalently to interactive protein surfaces that are exposed transiently during cellular processes such as protein synthesis, protein transport across membranes, DNA synthesis, the recycling of clathrin cages, the assembly of organellar complexes from imported subunits, and stress responses. This binding is reversed under circumstances which favour correct interactions and in some cases ATP hydrolysis is involved in this reversal. Some chaperones bind specifically to a structural feature present in a wide range of unrelated proteins that is accessible only during the early stages of folding. The nature of this structural feature is unknown, but its identification is an important goal of current research. Knowledge of chaperone function may be important for the production of proteins for biotechnological purposes since in some cases chaperones may improve the yield of functional product. It is likely that chaperone diseases exist which result from the failure of certain proteins to fold correctly due to changes in chaperone structure.

Citations & impact 


Impact metrics

Jump to Citations
Jump to Data

Citations of article over time

Article citations


Go to all (140) article citations

Data 


Similar Articles 


To arrive at the top five similar articles we use a word-weighted algorithm to compare words from the Title and Abstract of each citation.