Europe PMC

This website requires cookies, and the limited processing of your personal data in order to function. By using the site you are agreeing to this as outlined in our privacy notice and cookie policy.

Abstract 


Purpose of review

Monocytes play multiple roles in immune system functions and inflammatory diseases such as atherosclerosis. These roles are coupled to diverse trafficking and cellular migration behaviors. Here, we review recent advances in our understanding of such behaviors with emphasis on broad scale trafficking patterns and the cellular and molecular mechanisms regulating diapedesis, a central aspect of trafficking.

Recent findings

Monocytes consist of 'inflammatory' and 'resident' subsets, which exhibit differential functions and trafficking properties. Notably, the spleen has recently been identified as a reservoir of inflammatory monocytes, which are readily recruited to injured myocardium and possibly other tissues. Resident monocytes have been shown to undergo long-range crawling within the lumen of the microvasculature, which facilitates immune surveillance and rapid response to infection. Monocyte diapedesis has been demonstrated to utilize both para and transcellular migration routes facilitated by endothelial 'transmigratory cups'. A significant number of new adhesion molecules and signaling pathways have recently been uncovered as functional mediators and modulators of these processes.

Summary

Our improving understanding of monocyte trafficking and migration mechanisms has begun to shed light on the functions of these often enigmatic cells. Continued progress in this area will be critical for elucidating roles of monocytes in disease and for developing therapeutics that target monocytes.

References 


Articles referenced by this article (100)


Show 10 more references (10 of 100)

Citations & impact 


Impact metrics

Jump to Citations

Citations of article over time

Article citations


Go to all (51) article citations

Funding 


Funders who supported this work.

NHLBI NIH HHS (1)