Europe PMC

This website requires cookies, and the limited processing of your personal data in order to function. By using the site you are agreeing to this as outlined in our privacy notice and cookie policy.

Abstract 


Objective

To assess the use of two-channel electroencephalographical (EEG) recordings for predicting adverse neurodevelopmental outcome (death or Bayley II mental developmental index/psychomotor developmental index < 70) in extremely preterm infants and to determine the relationship between quantitative continuity measures and a specialist neurophysiologist assessment of the same EEG segment for predicting outcome.

Design

Observational study.

Setting

The study was conducted in a neonatal intensive care unit.

Patients

Preterm infants born <29 weeks' gestation.

Interventions

Two-channel EEGs using the reBRM2 monitor (BrainZ Instruments, Auckland, New Zealand) within 48 h of delivery. One-hour segments were analysed, blinded to the clinical outcome, by off-line quantitative analysis of continuity and a review of the raw EEG by a neurophysiologist.

Main outcome measures

Developmental assessment at a median of 15 months' corrected age.

Results

76 infants had an EEG within 48 h of delivery and a developmental assessment. The analysed segment of the EEG was obtained at 24 (3-48) h of age (median (range)). The neurophysiologist's assessment was a better predictor of adverse outcome than the continuity measures (positive predictive value 95% CI 75 (54% to 96%) vs 41 (22% to 60) at 25-µV threshold, negative predictive value 88 (80% to 96%) vs 84 (74% to 94%) and positive likelihood ratio 9.0 (3.2 to 24.6) vs 2.0 (1.2 to 3.6)). All the infants with definite seizures identified by the neurophysiologist had poor outcomes.

Conclusions

Modified cot-side EEG has potential to assist with identification of extremely preterm infants at risk for adverse neurodevelopmental outcomes. However, analysis by a neurophysiologist performed better than the currently available continuity analyses.

Citations & impact 


Impact metrics

Jump to Citations

Citations of article over time

Smart citations by scite.ai
Smart citations by scite.ai include citation statements extracted from the full text of the citing article. The number of the statements may be higher than the number of citations provided by EuropePMC if one paper cites another multiple times or lower if scite has not yet processed some of the citing articles.
Explore citation contexts and check if this article has been supported or disputed.
https://scite.ai/reports/10.1136/adc.2009.180539

Supporting
Mentioning
Contrasting
6
61
0

Article citations


Go to all (15) article citations