Europe PMC

This website requires cookies, and the limited processing of your personal data in order to function. By using the site you are agreeing to this as outlined in our privacy notice and cookie policy.

Abstract 


Background

Spermatogonial stem cells (SSCs) are the foundation of spermatogenesis and represent a crucial resource for male fertility restoration. It has not been well documented, however, whether the recovery of SSC population size after cytotoxic damage associates with the kinetics of male fertility restoration. We addressed this issue using the mouse as a model.

Methods

Following single injections of busulfan at 15, 30 or 45 mg/kg into male mice, we examined their ability to sire offspring at different times by natural mating and determined SSC numbers using spermatogonial transplantation. We measured testis physiological parameters (testis weights, sperm counts, serum and intratesticular testosterone levels, and histological assessments of spermatogenic recovery) and quantified the expression of glial-cell-line-derived neurotrophic factor (GDNF) transcripts.

Results

Regardless of busulfan doses, fertility was lost within 4 weeks after treatment, while more than 95% of SSCs were lost within 3 days. Fertility and SSC numbers gradually recovered with time, but the recoveries were delayed at higher busulfan doses. Interestingly, SSC numbers reached ∼30% of before-treatment levels by 4 weeks prior to the time of fertility restoration, across the dose groups. Sperm counts were ∼20% of before-treatment levels at the onset of fertility restoration, regardless of busulfan doses. We detected a significant increase in total GDNF mRNA per testis immediately after busulfan treatment.

Conclusions

The loss and restoration of fertility after busulfan treatment are direct consequences of SSC loss and expansion. Our data suggest that there is a threshold in SSC numbers that allows for male fertility restoration and that the testicular somatic environment responds rapidly and temporarily to the loss of spermatogonia, including SSCs, by altering GDNF mRNA levels. This study provides fundamental information to clinically apply SSCs for male fertility restoration in the future.

References 


Articles referenced by this article (29)


Show 10 more references (10 of 29)

Citations & impact 


Impact metrics

Jump to Citations

Citations of article over time

Alternative metrics

Altmetric item for https://www.altmetric.com/details/35511508
Altmetric
Discover the attention surrounding your research
https://www.altmetric.com/details/35511508

Article citations


Go to all (74) article citations

Funding 


Funders who supported this work.

Canadian Institutes of Health Research (4)