Europe PMC

This website requires cookies, and the limited processing of your personal data in order to function. By using the site you are agreeing to this as outlined in our privacy notice and cookie policy.

Abstract 


Impairments in the capacity of dopaminergic neurons to handle cytoplasmic dopamine may be a critical factor underlying the selective vulnerability of midbrain dopamine neurons in Parkinson's disease. Furthermore, toxicity of α-synuclein in dopaminergic neurons has been suggested to be mediated by direct interaction between dopamine and α-synuclein through formation of abnormal α-synuclein species, although direct in vivo evidence to support this hypothesis is lacking. Here, we investigated the role of dopamine availability on α-synuclein mediated neurodegeneration in vivo. We found that overexpression of α-synuclein in nigral dopamine neurons in mice with deficient vesicular storage of dopamine led to a significant increase in dopaminergic neurodegeneration. Importantly, silencing the tyrosine hydroxylase enzyme - thereby reducing dopamine content in the nigral neurons - reversed the increased vulnerability back to the baseline level observed in wild-type littermates, but failed to eliminate it completely. Importantly, TH knockdown was not effective in altering the toxicity in the wild-type animals. Taken together, our data suggest that under normal circumstances, in healthy dopamine neurons, cytoplasmic dopamine is tightly controlled such that it does not contribute significantly to α-synuclein mediated toxicity. Dysregulation of the dopamine machinery in the substantia nigra, on the other hand, could act as a trigger for induction of increased toxicity in these neurons and could explain how these neurons become more vulnerable and die in the disease process.

References 


Articles referenced by this article (50)


Show 10 more references (10 of 50)

Citations & impact 


Impact metrics

Jump to Citations

Citations of article over time

Alternative metrics

Altmetric item for https://www.altmetric.com/details/772125
Altmetric
Discover the attention surrounding your research
https://www.altmetric.com/details/772125

Article citations


Go to all (40) article citations

Similar Articles 


To arrive at the top five similar articles we use a word-weighted algorithm to compare words from the Title and Abstract of each citation.

Funding 


Funders who supported this work.

Basal Ganglia Disorders Linnaeus Consortium

    European Commission FP7 (3)

    European Community's Seventh Framework Programme FP7‐HEALTH‐2009 (3)

    European Research Council

      European Union Marie Curie Actions Research Training Network Program in Nervous System Repair (1)

      Marie Curie IEF Fellowships

        Michael J. Fox Foundation

          Parkinsonfonden

            Swedish Research Council (1)

            Söderberg foundation (1)