Europe PMC

This website requires cookies, and the limited processing of your personal data in order to function. By using the site you are agreeing to this as outlined in our privacy notice and cookie policy.

Abstract 


Background and purpose

When treated by radiotherapy, patients with squamous cell carcinomas of the head and neck (HNSCC) positive for HPV and p16(INK4a) possess a clearly favorable prognosis as compared to those with HPV-negative HNSCC. The aim of this work was to study whether the better outcomes might be caused by an enhanced cellular radiosensitivity.

Materials and methods

The radiation response of five HPV/p16(INK4a)-positive and five HPV-negative cell lines was characterized with regard to cellular radiosensitivity by colony formation assay. Furthermore G1- and G2-arrest, apoptosis and residual DNA double-strand breaks (DSB) were analyzed by the colcemid-based G1-efflux assay, propidium iodide staining, the detection of PARP cleavage, the fluorescence-based detection of caspase activity and the immunofluorescence staining of γH2AX and 53BP1 foci.

Results

On average, the cellular radiosensitivity of the HNSCC cell lines positive for HPV and p16(INK4a) was higher as compared to the sensitivity of a panel of five HPV-negative HNSCC cell lines (SF3=0.2827 vs. 0.4455). The higher sensitivity does not result from increased apoptosis or the execution of a permanent G1-arrest, but is rather associated with both, elevated levels of residual DSBs and extensive G2-arrest.

Conclusions

Increased cellular radiosensitivity due to compromised DNA repair capacity is likely to contribute to the improved outcome of patients with HPV/p16(INK4a)-positive tumors when treated by radiotherapy.

References 


Articles referenced by this article (25)


Show 10 more references (10 of 25)

Citations & impact 


Impact metrics

Jump to Citations

Citations of article over time

Alternative metrics

Altmetric item for https://www.altmetric.com/details/1624873
Altmetric
Discover the attention surrounding your research
https://www.altmetric.com/details/1624873

Smart citations by scite.ai
Smart citations by scite.ai include citation statements extracted from the full text of the citing article. The number of the statements may be higher than the number of citations provided by EuropePMC if one paper cites another multiple times or lower if scite has not yet processed some of the citing articles.
Explore citation contexts and check if this article has been supported or disputed.
https://scite.ai/reports/10.1016/j.radonc.2013.03.013

Supporting
Mentioning
Contrasting
41
244
2

Article citations


Go to all (195) article citations