Europe PMC

This website requires cookies, and the limited processing of your personal data in order to function. By using the site you are agreeing to this as outlined in our privacy notice and cookie policy.

Abstract 


The disappearance of palatal medial edge epithelium (MEE) after fusion of secondary palatal shelves is often cited as a classical example of embryonic remodeling by programmed cell death. We reinvestigated this phenomenon in 16-day rat embryos, using light and electron microscopy. We confirm reports that the periderm of the two-layered MEE begins to slough after shelves assume horizontal positions. In vitro, peridermal cells are not able to slough and are trapped during the adhesion process. In vivo, however, surface cells shed before the shelves in the anterior palate adhere, allowing junctions to form between opposing basal epithelial cells. Midline seams so formed consist of two layers of basal cells, all of which appear healthy. Even though its cells are dividing, growth of the seam fails to keep pace with palatal growth and it thins to one layer of cells, and then breaks up into small islands. The basal lamina disappears and elongating MEE cells extend filopodia into adjacent connective tissue. Electron micrographs reveal transitional steps in loss of epithelial characteristics and gain of fibroblast-like features by transforming MEE cells. One such feature, observed with the aid of immunofluorescence, is the turn of the mesenchymal cytoskeletal protein, vimentin. No cell death or macrophages are observed after adhesion and thinning over most of the palate. These data indicate that MEE is an ectoderm that retains the ability to transform into mesenchymal cells. Epithelial-mesenchymal transformation may be expressed in other embryonic remodelings (R.L. Trelstad, A. Hayashi, K. Hayashi, and P.K. Donahue, 1982, Dev. Biol. 92, 27), resulting in heretofore unsuspected conservation of embryonic cell populations.

References 


Articles referenced by this article (31)


Show 10 more references (10 of 31)

Citations & impact 


Impact metrics

Jump to Citations

Citations of article over time

Smart citations by scite.ai
Smart citations by scite.ai include citation statements extracted from the full text of the citing article. The number of the statements may be higher than the number of citations provided by EuropePMC if one paper cites another multiple times or lower if scite has not yet processed some of the citing articles.
Explore citation contexts and check if this article has been supported or disputed.
https://scite.ai/reports/10.1016/s0012-1606(89)80017-x

Supporting
Mentioning
Contrasting
2
227
3

Article citations


Go to all (172) article citations

Funding 


Funders who supported this work.

NICHD NIH HHS (1)

NIDCR NIH HHS (2)