Europe PMC

This website requires cookies, and the limited processing of your personal data in order to function. By using the site you are agreeing to this as outlined in our privacy notice and cookie policy.

Abstract 


Blood vessel formation during vertebrate development relies on a process called angiogenesis and is essential for organ growth and tissue viability. In addition, angiogenesis leads to pathological blood vessel growth in diseases with tissue ischaemia, such as neovascular eye disease and cancer. Neuropilin 1 (NRP1) is a transmembrane protein that serves as a receptor for the VEGF₁₆₅ isoform of the vascular endothelial growth factor (VEGF) to enhance cell migration during angiogenesis via VEGF receptor 2 (VEGFR2), and it is also essential for VEGF-induced vascular permeability and arteriogenesis. In addition, NRP1 activation affects angiogenesis independently of VEGF signalling by activating the intracellular kinase ABL1. NRP1 also acts as a receptor for the class 3 semaphorin (SEMA3A) to regulate vessel maturation during tumour angiogenesis and vascular permeability in eye disease. In the present paper, we review current knowledge of NRP1 regulation during angiogenesis and vascular pathology.

References 


Articles referenced by this article (50)


Show 10 more references (10 of 50)

Citations & impact 


Impact metrics

Jump to Citations

Citations of article over time

Smart citations by scite.ai
Smart citations by scite.ai include citation statements extracted from the full text of the citing article. The number of the statements may be higher than the number of citations provided by EuropePMC if one paper cites another multiple times or lower if scite has not yet processed some of the citing articles.
Explore citation contexts and check if this article has been supported or disputed.
https://scite.ai/reports/10.1042/bst20140244

Supporting
Mentioning
Contrasting
2
59
0

Article citations


Go to all (64) article citations

Similar Articles 


To arrive at the top five similar articles we use a word-weighted algorithm to compare words from the Title and Abstract of each citation.

Funding 


Funders who supported this work.

British Heart Foundation (1)

Wellcome Trust (2)