Europe PMC

This website requires cookies, and the limited processing of your personal data in order to function. By using the site you are agreeing to this as outlined in our privacy notice and cookie policy.

Abstract 


The Suppressor of Cytokine Signaling (SOCS) proteins are critical, highly conserved feedback inhibitors of signal transduction cascades. The family of SOCS proteins is divided into two groups: ancestral and vertebrate-specific SOCS proteins. Vertebrate-specific SOCS proteins have been heavily studied as a result of their strong mutant phenotypes. However, the ancestral clade remains less studied, a potential result of genetic redundancies in mammals. Use of the genetically tractable organism Drosophila melanogaster enables in vivo assessment of signaling components and mechanisms with less concern about the functional redundancy observed in mammals. In this study, we investigated how the SOCS family member Suppressor of Cytokine Signaling at 36E (Socs36E) attenuates Janus Kinase/Signal Transducer and Activator of Transcription (Jak/STAT) activation during specification of motile border cells in Drosophila oogenesis. We found that Socs36E genetically interacts with the Cullin2 (Cul2) scaffolding protein. Like Socs36E, Cul2 is required to limit the number of motile cells in egg chambers. We demonstrated that loss of Cul2 in the follicle cells significantly increased nuclear STAT protein levels, which resulted in additional cells acquiring invasive properties. Further, reduction of Cul2 suppressed border cell migration defects that occur in a Stat92E-sensitized genetic background. Our data incorporated Cul2 into a previously described Jak/STAT-directed genetic regulatory network that is required to generate a discrete boundary between cell fates. We also found that Socs36E is able to attenuate STAT activity in the egg chamber when it does not have a functional SOCS box. Collectively, this work contributes mechanistic insight to a Jak/STAT regulatory genetic circuit, and suggests that Socs36E regulates Jak/STAT signaling via a Cul2-dependent mechanism, as well as by a Cullin-independent manner, in vivo.

References 


Articles referenced by this article (118)


Show 10 more references (10 of 118)

Citations & impact 


Impact metrics

Jump to Citations
Jump to Data

Citations of article over time

Alternative metrics

Altmetric item for https://www.altmetric.com/details/4411923
Altmetric
Discover the attention surrounding your research
https://www.altmetric.com/details/4411923

Smart citations by scite.ai
Smart citations by scite.ai include citation statements extracted from the full text of the citing article. The number of the statements may be higher than the number of citations provided by EuropePMC if one paper cites another multiple times or lower if scite has not yet processed some of the citing articles.
Explore citation contexts and check if this article has been supported or disputed.
https://scite.ai/reports/10.1016/j.mod.2015.08.003

Supporting
Mentioning
Contrasting
0
11
0

Article citations


Go to all (7) article citations

Data 


Similar Articles 


To arrive at the top five similar articles we use a word-weighted algorithm to compare words from the Title and Abstract of each citation.

Funding 


Funders who supported this work.

March of Dimes

    NSF (1)