Europe PMC

This website requires cookies, and the limited processing of your personal data in order to function. By using the site you are agreeing to this as outlined in our privacy notice and cookie policy.

Abstract 


Reduced mitochondrial function is an important cause of aging and age-related diseases. We previously revealed a relatively higher level of mitochondrial DNA (mtDNA) content in centenarians. However, it is still unknown whether such an mtDNA content pattern of centenarians could be passed on to their offspring and how it was regulated. To address these issues, we recruited 60 longevity families consisting of 206 family members (cohort 1) and explored their mtDNA copy number. The results showed that the first generation of the offspring (F1 offspring) had a higher level of mtDNA copy number than their spouses (p < 0.05) independent of a gender effect. In addition, we found a positive association of mtDNA copy number in centenarians with that in F1 offspring (r = 0.54, p = 0.0008) but not with that in F1 spouses. These results were replicated in another independent cohort consisting of 153 subjects (cohort 2). RNA sequencing analysis suggests that the single-stranded DNA-binding protein 4 was significantly associated with mtDNA copy number and was highly expressed in centenarians as well as F1 offspring versus the F1 spouses, thus likely regulates the mtDNA copy number in the long-lived family members. In conclusion, our results suggest that the pattern of high mtDNA copy number is likely inheritable, which may act as a favorable factor to familial longevity through assuring adequate energy supply.

References 


Articles referenced by this article (44)


Show 10 more references (10 of 44)

Citations & impact 


Impact metrics

Jump to Citations
Jump to Data

Citations of article over time

Alternative metrics

Altmetric item for https://www.altmetric.com/details/10307962
Altmetric
Discover the attention surrounding your research
https://www.altmetric.com/details/10307962

Smart citations by scite.ai
Smart citations by scite.ai include citation statements extracted from the full text of the citing article. The number of the statements may be higher than the number of citations provided by EuropePMC if one paper cites another multiple times or lower if scite has not yet processed some of the citing articles.
Explore citation contexts and check if this article has been supported or disputed.
https://scite.ai/reports/10.1016/j.neurobiolaging.2016.07.026

Supporting
Mentioning
Contrasting
1
6
0

Article citations


Go to all (6) article citations

Data 


Similar Articles 


Funding 


Funders who supported this work.

National Basic Research Program of China (1)

National Natural Science Foundation of China (2)

Youth Innovation Promotion Association of Chinese Academy of Sciences