Europe PMC

This website requires cookies, and the limited processing of your personal data in order to function. By using the site you are agreeing to this as outlined in our privacy notice and cookie policy.

Abstract 


Objective

Macrophages polarize to proinflammatory M1 or anti-inflammatory M2 states with distinct physiological functions. This transition within the M1-M2 phenotypes decides the nature, duration and severity of an inflammatory response. Although there is a substantial understanding of the fate of these phenotypes, the underlying molecular mechanism of transition within the M1-M2 phenotypes is not well understood. We have investigated the role of neuronal nitric oxide synthase (NOS1)-mediated regulation of activator protein 1 (AP-1) transcription factor in macrophages as a critical effector of macrophage phenotypic change.

Materials and methods

Raw 264.7 and THP1 macrophages were stimulated with LPS (250 ng/ml) to activate the inflammatory signaling pathway. We analyzed the effect of pharmacological NOS1 inhibitor: TRIM (1-(2- Trifluoromethylphenyl) imidazole) on LPS-induced inflammatory response in macrophages.

Results

We determined that NOS1-derived nitric oxide (NO) facilitate Fos and Jun interaction which induces IL-12 & IL-23 expression. Pharmacological inhibition of NOS1 inhibits ATF2 and Jun dimer. Switching of Fos and Jun dimer to ATF2 and Jun dimerization controls phenotype transition from IL-12high IL-23high IL-10low to IL-12low IL-23lowIL-10high phenotype, respectively.

Conclusion

These findings highlight a key role of the TLR4-NOS1-AP1 signaling axis in regulating macrophage polarization.

References 


Articles referenced by this article (56)


Show 10 more references (10 of 56)

Citations & impact 


Impact metrics

Jump to Citations
Jump to Data

Citations of article over time

Article citations


Go to all (18) article citations

Data 


Similar Articles 


To arrive at the top five similar articles we use a word-weighted algorithm to compare words from the Title and Abstract of each citation.

Funding 


Funders who supported this work.

Department of Biotechnology, Ministry of Science and Technology