Europe PMC

This website requires cookies, and the limited processing of your personal data in order to function. By using the site you are agreeing to this as outlined in our privacy notice and cookie policy.

Abstract 


The transcription factor Gli2 plays crucial roles in the transduction of Hedgehog (Hh) signals, yet the mechanisms that control Gli2 degradation remain unclear. Here we have identified the eubiquitinating enzyme otubain2 (OTUB2) as a regulator of Gli2 protein degradation. We found that OTUB2 was coimmunoprecipitated with Gli2. Knockdown of OTUB2 decreased Gli2 protein level while the proteasome inhibitor MG-132 treatment restored Gli2 expression. Additionally, OTUB2 overexpression stabilized Gli2 protein in U2OS cells and extended the half-life of Gli2. We also found that knockdown of OTUB2 reduced deubiquitination of Gli2 in vivo. In vitro deubiquitination assay showed that ubiquitinated Gli2 was decreased by wild-type OTUB2 but not OTUB2 mutations. We also found that OTUB2 knockdown suppressed the ALP activity and the expression of the common markers BMP2 and RUNX2 during osteogenesis of MSCs in response to Shh and Smo agonists, which indicated OTUB2 may have effect on osteogenic differentiation by regulating Hh signaling.

Citations & impact 


Impact metrics

Jump to Citations
Jump to Data

Citations of article over time

Smart citations by scite.ai
Smart citations by scite.ai include citation statements extracted from the full text of the citing article. The number of the statements may be higher than the number of citations provided by EuropePMC if one paper cites another multiple times or lower if scite has not yet processed some of the citing articles.
Explore citation contexts and check if this article has been supported or disputed.
https://scite.ai/reports/10.1016/j.bbrc.2018.09.071

Supporting
Mentioning
Contrasting
0
11
0

Article citations


Go to all (10) article citations

Data 


Similar Articles 


To arrive at the top five similar articles we use a word-weighted algorithm to compare words from the Title and Abstract of each citation.


Funding 


Funders who supported this work.

National Nature Science Foundation of China (1)

SJTU Medicine Engineering Interdisciplinary Research (2)