Europe PMC

This website requires cookies, and the limited processing of your personal data in order to function. By using the site you are agreeing to this as outlined in our privacy notice and cookie policy.

Abstract 


Introduction

Glioblastoma multiforme (GBM) is the most common brain malignancy in adults, and currently available GBM treatments present several unique challenges. It is known that GBM involves cancer stem-like cells (CSCs) and tumor cells that aggressively invade normal brain tissues, and both cell types may cause resistance to radiotherapy (RT) and are thus responsible for therapeutic failure. The radioresistance of GBM cells relies on the efficient activation of the DNA damage response (DDR), but the mechanisms linking this response with stem-cell status and tumor invasion remain unclear.

Materials and methods

We used irradiation to treat patient-derived GBM (Par) cells and then purified radioresistant GBM (R2M2) cells through two rounds of irradiation and an invasion assay. Musashi-1 (MSI1) is a neural stem-cell marker and key oncogenic factor of GBM. We identified MSI1 expression to predict radioresistance through silencing an MSI1-high-expressing R2M2 cell line or inducing overexpression in a Par cell line with low/no MSI1 expression and assessing the subsequent DDR.

Result

MSI1 enhances tumor invasion via VCAM1 and modulates GBM radioresistance via the hyperactivation of the DDR through increasing homologous recombination repair and evading apoptosis. MSI1 knockdown induces DNA damage accumulation in irradiated GBM cells and promotes their depletion in vitro; MSI1 knockdown also inhibits the formation of GBMs generated by irradiated xeno-transplanted cells. MSI1 inhibition may radiosensitize tumors, prevent CSC-positive selection induced by RT, and reduce tumor invasion.

Conclusion

MSI1 may involve in regulating GBM radioresistance, invasion, and recurrence and could be a novel target for GBM treatment.

Citations & impact 


Impact metrics

Jump to Citations
Jump to Data

Citations of article over time

Alternative metrics

Altmetric item for https://www.altmetric.com/details/49593173
Altmetric
Discover the attention surrounding your research
https://www.altmetric.com/details/49593173

Smart citations by scite.ai
Smart citations by scite.ai include citation statements extracted from the full text of the citing article. The number of the statements may be higher than the number of citations provided by EuropePMC if one paper cites another multiple times or lower if scite has not yet processed some of the citing articles.
Explore citation contexts and check if this article has been supported or disputed.
https://scite.ai/reports/10.1016/j.radonc.2018.09.014

Supporting
Mentioning
Contrasting
2
45
0

Article citations


Go to all (30) article citations

Data 


Similar Articles 


To arrive at the top five similar articles we use a word-weighted algorithm to compare words from the Title and Abstract of each citation.