Europe PMC

This website requires cookies, and the limited processing of your personal data in order to function. By using the site you are agreeing to this as outlined in our privacy notice and cookie policy.

Abstract 


Purpose of review

Clonal hematopoiesis of indeterminate potential (CHIP) increases with age and occurs when a single mutant hematopoietic stem cell (HSC) contributes to a significant clonal proportion of mature blood lineages. Somatic mutations in the TP53 gene, which encodes the tumor suppressor protein p53, rank in the top five among genes that were mutated in CHIP. This review focuses on mechanisms by which mutant p53 promotes CHIP progression and drives the pathogenesis of hematological malignancies, including myelodysplastic syndromes, and acute myeloid leukemia.

Recent findings

TP53 was frequently mutated in individuals with CHIP. Although clinical studies suggest that expansion of HSCs with TP53 mutations predisposes the elderly to hematological neoplasms, there is a significant gap in knowledge regarding the mechanisms by which TP53 mutations promote HSC expansion. Recent findings suggest that several cellular stressors, including hematopoietic transplantation, genotoxic stress, and inflammation, promote the expansion of HSCs with TP53 mutations. Further, TP53 mutations identified in CHIP cooperate with genetic and/or epigenetic changes in leukemogenesis.

Summary

TP53 mutations identified in CHIP are associated with increased risks of de novo and therapy-related hematological neoplasms. Thus, targeting mutant p53 and related pathways holds great potential in preventing CHIP progression and treating hematological malignancies.

Citations & impact 


Impact metrics

Jump to Citations
Jump to Data

Citations of article over time

Alternative metrics

Altmetric item for https://www.altmetric.com/details/59882336
Altmetric
Discover the attention surrounding your research
https://www.altmetric.com/details/59882336

Article citations


Go to all (14) article citations

Data 


Similar Articles 


To arrive at the top five similar articles we use a word-weighted algorithm to compare words from the Title and Abstract of each citation.

Funding 


Funders who supported this work.

NIDDK NIH HHS (1)