Europe PMC

This website requires cookies, and the limited processing of your personal data in order to function. By using the site you are agreeing to this as outlined in our privacy notice and cookie policy.

Abstract 


Although hepatocellular carcinoma (HCC)-related mortality has increased over the past decades, treatment options are still very limited, underlining the need for developing new therapeutic strategies. The molecular chaperone heat shock protein 90 (Hsp90) plays a key role in post-translational maturation of many oncogenic client proteins that are important for survival and proliferation of cancer cells. Thus, inhibitors of Hsp90 are promising targets for many cancer types. In this study, 15 diarylpyrazole compounds were screened against MCF7 and HepG2 cell lines. Compound 8, which contained a thiophene group, demonstrated the highest antiproliferative activity against HepG2 cells having an IC50 of 0.083 μM. Four additional diarylpyrazoles, each containing a thiophene group, were prepared and screened for antiproliferative activity. None of these four compounds exhibited superior activity to compound 8 on HepG2 cells. Therefore, compound 8 was selected for further in vitro assays. Cell cycle arrest was observed at the G2 phase in compound 8-treated cells. Compound 8 also caused a 7.7-fold increase in caspase-3. These results confirm the apoptotic effect of compound 8 on HepG2 cells. Moreover, compound 8 inhibited Hsp90 (IC50 = 2.67 ± 0.18 µM) in an in vitro assay and caused a 70.8% reduction in Hsp90 levels in a HepG2 cell-based assay. Additionally, compound 8 caused significant reduction in the levels of Hsp90 client proteins (Akt, c-Met, c-Raf, and EGFR) and a 1.57-fold increase in Hsp70. Molecular docking studies were also performed to predict the binding mode of compound 8 and followed by molecular dynamics simulations to give further insights into the binding mode of 8.

Citations & impact 


Impact metrics

Jump to Citations

Citations of article over time

Article citations


Go to all (6) article citations

Funding 


Funders who supported this work.

Natural Sciences and Engineering Research Council of Canada