Europe PMC

This website requires cookies, and the limited processing of your personal data in order to function. By using the site you are agreeing to this as outlined in our privacy notice and cookie policy.

Abstract 


Idiopathic pulmonary fibrosis (IPF) is an intractable disease with poor prognosis, and therapeutic options are limited. While the pathogenic mechanism is unknown, cytokines, such as transforming growth factor (TGF)-β, and immune cells, such as monocytes and macrophages, that produce them, seem to be involved in fibrosis. Some phosphodiesterase 4 (PDE4) inhibitors reportedly have anti-fibrotic potential by acting on these disease-related factors. Therefore, we evaluated the effect of a novel PDE4 inhibitor, AA6216, on nonclinical IPF-related models and samples from IPF patients. First, we examined the inhibitory effect of AA6216 on the production of TGF-β1 from a human monocytic cell line, THP-1. Second, we analyzed the impact of AA6216 on TNF-α production by human alveolar macrophages collected from patients with IPF. Finally, we investigated the anti-fibrotic potency of AA6216 on bleomycin-induced lung fibrosis in mice. We found that AA6216 significantly inhibited TGF-β1 production by THP-1 cells. It also significantly suppressed TNF-α production by alveolar macrophages from patients with IPF. In the mouse model of bleomycin-induced pulmonary fibrosis, therapeutic administration of AA6216 significantly reduced fibrosis scores, collagen-stained areas, and TGF-β1 in bronchoalveolar lavage fluid. AA6216 may represent a new agent for the treatment of IPF with a distinct mechanism of action from that of conventional anti-fibrotic agents.

Citations & impact 


Impact metrics

Jump to Citations

Citations of article over time

Alternative metrics

Altmetric item for https://www.altmetric.com/details/135395697
Altmetric
Discover the attention surrounding your research
https://www.altmetric.com/details/135395697

Article citations


Go to all (13) article citations

Similar Articles 


To arrive at the top five similar articles we use a word-weighted algorithm to compare words from the Title and Abstract of each citation.


Funding 


Funders who supported this work.

Meiji Seika Pharma Co., Ltd. (1)