Europe PMC

This website requires cookies, and the limited processing of your personal data in order to function. By using the site you are agreeing to this as outlined in our privacy notice and cookie policy.

Abstract 


Objectives

To test the performance of a 3D convolutional neural network (CNN) in analysing brain [18F]DOPA PET/CT in order to identify patients with nigro-striatal neurodegeneration. We evaluated the robustness of the 3D CNN by testing it against a manual regional analysis of the striata by using a striatal-to-occipital ratio (SOR).

Methods

We analyzed patients who had undergone [18F]DOPA PET/CT from 2016 to 2018. Two examiners interpreted PET/CT images as positive or negative. Only patients with at least 2 years of follow-up and an ascertained neurological diagnosis were included. A 3D CNN was developed to evaluate [18F]DOPA PET/CT and refine the diagnosis of movement disorder. This system required training and testing, which were carried out on 2/3 and 1/3 of patients, respectively. A regional analysis was also conducted by drawing region of interest on T1-weighted 3D MRI scans, on which the [18F]DOPA PET images were first co-registered.

Results

Ninety-eight patients were enrolled: 43 presented nigro-striatal degeneration and 55 negative cases used as controls. After training on 69 patients, the diagnostic performance of the 3D CNN was then calculated in 29 patients. Sensitivity, specificity, negative predictive value, positive predictive value and accuracy were 100%, 89%, 100%, 85% and 93%, respectively. When we compared the 3D CNN results with the SOR analysis, we found that the two patients falsely classified as positive by the 3D CNN procedure showed SOR values ≤ 5th percentile of the negative cases' distribution.

Conclusions

3D CNNs are able to interpret [18F]DOPA PET/CT properly, revealing patients affected by Parkinson's disease.

Key points

• [18F]DOPA PET/CT is a sensitive diagnostic tool to identify patients with nigro-striatal neurodegeneration. • A semiquantitative evaluation of the images allows a more confident interpretation of the PET findings. • 3D convolutional neural network allows an accurate interpretation of 18F-DOPA PET/CT images, revealing patients affected by Parkinson's disease.

References 


Articles referenced by this article (18)


Show 8 more references (10 of 18)

Citations & impact 


Impact metrics

Jump to Citations

Citations of article over time

Alternative metrics

Altmetric item for https://www.altmetric.com/details/101608793
Altmetric
Discover the attention surrounding your research
https://www.altmetric.com/details/101608793

Smart citations by scite.ai
Smart citations by scite.ai include citation statements extracted from the full text of the citing article. The number of the statements may be higher than the number of citations provided by EuropePMC if one paper cites another multiple times or lower if scite has not yet processed some of the citing articles.
Explore citation contexts and check if this article has been supported or disputed.
https://scite.ai/reports/10.1007/s00330-021-07779-z

Supporting
Mentioning
Contrasting
1
6
0

Article citations


Go to all (11) article citations