Europe PMC

This website requires cookies, and the limited processing of your personal data in order to function. By using the site you are agreeing to this as outlined in our privacy notice and cookie policy.

Abstract 


The development of electrodes with high conductivity, optical transparency, and reliable mechanical flexibility and stability is important for numerous solution-processed photoelectronic applications. Although transparent Ti3C2TX MXene electrodes with high conductivity are promising, their suitability for displays remains limited because of the high sheet resistance, which is caused by undesirable flake junctions and surface roughness. Herein, a flexible and transparent electrode has been fabricated that is suitable for a full-solution-processed quantum dot light-emitting diode (QLED). An MXene-silver nanowire (AgNW) hybrid electrode (MXAg) consists of a highly conductive AgNW network mixed with solution-processed MXene flakes. Efficient welding of wire-to-wire junctions with MXene flakes yields an electrode with a low sheet resistance and a high transparency of approximately 13.9 Ω sq-1 and 83.8%, respectively. By employing a thin polymer buffer layer of poly(methyl methacrylate) (PMMA), followed by mild thermal treatment, a hybrid PMMA-based MXene-AgNW (MXAg@PMMA) electrode in which the work function of an MXAg hybrid FTE physically embedded in PMMA (MXAg@PMMA) can be tuned by controlling the amount of MXene in the hybrid film facilitates the development of a high-performance solution-processed QLED that exhibits maximum external quantum and current efficiencies of approximately 9.88% and 25.8 cd/A, respectively, with excellent bending stability. This work function-tunable flexible transparent electrode based on solution-processed nanoconductors provides a way to develop emerging high-performance, wearable, cost-effective, and soft electroluminescent devices.

Citations & impact 


Impact metrics

Jump to Citations

Citations of article over time

Alternative metrics

Altmetric item for https://www.altmetric.com/details/128705380
Altmetric
Discover the attention surrounding your research
https://www.altmetric.com/details/128705380

Article citations


Go to all (7) article citations

Similar Articles 


To arrive at the top five similar articles we use a word-weighted algorithm to compare words from the Title and Abstract of each citation.

Funding 


Funders who supported this work.

National Research Foundation of Korea (3)