Europe PMC

This website requires cookies, and the limited processing of your personal data in order to function. By using the site you are agreeing to this as outlined in our privacy notice and cookie policy.

Abstract 


The purpose of the study is to explore the underlying mechanisms of xenon (Xe) which protects against spinal cord ischemia/reperfusion injury (SCIRI). A SCIRI rat model was induced by abdominal artery occlusion for 85 min and reperfusion. Xe postconditioning (50% Xe) was administered 1 h after 1 h of reperfusion. At reperfusion time points (2, 4, 6, and 24 h), rats were treated with spinal cord scans by MRI to assess the time of peak spinal cord injury after SCIRI. Subsequently, endoplasmic reticulum (ER) stress inhibitor sodium 4-phenylbutyrate (4-PBA) was administered by daily intraperitoneal injection (50 mg/kg) for 5 days before SCIRI. At 4 h after reperfusion, motor function, immunofluorescence staining, hematoxylin and eosin (HE) staining, Nissl staining, TUNEL staining, real-time reverse transcription polymerase chain (RT-PCR) reaction, and western blot analyses were performed to investigate the protective effects of Xe against SCIRI. In the rat I/R model, spinal cord edema peaked at reperfusion 4 h. SCIRI activated ER stress, which was located in neurons. Xe postconditioning remarkably alleviated hind limb motor function, reduced neuronal apoptosis rate, increased the number of normal neurons, and inhibited the expression of ER stress-related protein in spinal cord. Furthermore, the administration of the ER stress inhibitor 4-PBA strongly decreased ER stress-induced apoptosis following SCIRI. Xe postconditioning inhibits ER stress activation, which contributes to alleviate SCIRI by suppressing neuronal apoptosis.

References 


Articles referenced by this article (39)


Show 10 more references (10 of 39)

Citations & impact 


Impact metrics

Jump to Citations

Article citations