Europe PMC

This website requires cookies, and the limited processing of your personal data in order to function. By using the site you are agreeing to this as outlined in our privacy notice and cookie policy.

Abstract 


High-speed atomic force microscopy (HS-AFM) is now a widely used technique to study the dynamics of single biomolecules and complex structures. In the past, it has mainly been used to capture surface topography as structural analysis, leading to important discoveries not attainable by other methods. Similar to conventional AFM, the scope of HS-AFM was recently expanded to encompass quantities beyond topography, such as the measurement of mechanical properties. This review delves into various methodologies for assessing mechanical properties, ranging from semi-quantitative approaches to precise force measurements and their corresponding sample responses. We will focus on the application to single proteins such as bridging integrator-1, ion channels such as Piezo1, complex structures such as microtubules and supramolecular fibers. In all these examples, the unique combination of quantifiable force application and high spatiotemporal resolution allows to unravel mechanisms that cannot be investigated by conventional means.

Citations & impact 


Impact metrics

Jump to Citations

Alternative metrics

Altmetric item for https://www.altmetric.com/details/163357542
Altmetric
Discover the attention surrounding your research
https://www.altmetric.com/details/163357542

Smart citations by scite.ai
Smart citations by scite.ai include citation statements extracted from the full text of the citing article. The number of the statements may be higher than the number of citations provided by EuropePMC if one paper cites another multiple times or lower if scite has not yet processed some of the citing articles.
Explore citation contexts and check if this article has been supported or disputed.
https://scite.ai/reports/10.1093/jmicro/dfad051

Supporting
Mentioning
Contrasting
0
2
0

Article citations

Similar Articles 


To arrive at the top five similar articles we use a word-weighted algorithm to compare words from the Title and Abstract of each citation.

Funding 


Funders who supported this work.

Core Research for Evolutional Science and Technology (1)

Japan Society for the Promotion of Science (1)