Europe PMC

This website requires cookies, and the limited processing of your personal data in order to function. By using the site you are agreeing to this as outlined in our privacy notice and cookie policy.

Abstract 


Background

Extracellular vesicles (EVs) derived from mesenchymal stromal cells (MSCs) offer promising prospects for stimulating cartilage regeneration. The different formation mechanisms suggest that exosomes and ectosomes possess different biological functions. However, little attention has been paid to the differential effects of EV subsets on cartilage regeneration.

Methods

Our study compared the effects of the two EVs isolated from adipose-derived MSCs (ASCs) on chondrocytes and bone marrow-derived MSCs (BMSCs) in vitro. Additionally, we loaded the two EVs into type I collagen hydrogels to optimize their application for the treatment of osteochondral defects in vivo.

Results

In vitro experiments demonstrate that ASC-derived exosomes (ASC-Exos) significantly promoted the proliferation and migration of both cells more effectively than ASC-derived ectosomes (ASC-Ectos). Furthermore, ASC-Exos facilitated a stronger differentiation of BMSCs into chondrogenic cells than ASC-Ectos, but both inhibited chondrocyte apoptosis to a similar extent. In the osteochondral defect model of rats, ASC-Exos promoted cartilage regeneration in situ better than ASC-Ectos. At 8 weeks, the hydrogel containing exosomes group (Gel + Exo group) had higher macroscopic and histological scores, a higher value of trabecular bone volume fraction (BV/TV), a lower value of trabecular thickness (Tb.Sp), and a better remodeling of extracellular matrix than the hydrogel containing ectosomes group (Gel + Ecto group). At 4 and 8 weeks, the expression of CD206 and Arginase-1 in the Gel + Exo group was significantly higher than that in the Gel + Ecto group.

Conclusion

Our findings indicate that administering ASC-Exos may be a more effective EV strategy for cartilage regeneration than the administration of ASC-Ectos.

Free full text 


Page not available

Reason: The web page address (URL) that you used may be incorrect.
URL: http://www.ebi.ac.uk/europepmc/ppmc/articles/PMC10792834/
Message ID: 527168156 (wp-p1m-39.ebi.ac.uk)
Time: 2024/11/20 08:44:48

If you need further help, please send an email to PMC. Include the information from the box above in your message.

  • Search the complete PMC archive.
  • Browse the contents of a specific journal in PMC.
  • Find a specific article by its citation (journal, date, volume, first page, author or article title).

Citations & impact 


Impact metrics

Jump to Citations

Article citations

Data 


Data behind the article

This data has been text mined from the article, or deposited into data resources.

Funding 


Funders who supported this work.

National Natural Science Foundation of China (2)