Europe PMC

This website requires cookies, and the limited processing of your personal data in order to function. By using the site you are agreeing to this as outlined in our privacy notice and cookie policy.

Abstract 


Spin-casting of molecularly doped polymer solution mixtures is one of the commonly used methods to obtain conductive organic semiconductor films. In spin-casted films, electronic interaction between the dopant and polymer is one of the crucial factors that dictates the doping efficiency. Here, we investigate excitonic couplings using ultrafast two-dimensional electronic spectroscopy to examine the different types of electronic interactions in ion pairs of the prototype F4TCNQ-doped P3HT polymer system in a precursor solution mixture for spin-casting. Off-diagonal peaks in the 2D spectra clearly establish the excitonic coupling between P3HT+ and F4TCNQ- ions in solution. The observed excitonic coupling is the direct manifestation of a Coulombic interaction between the ion pair. The excited-state lifetime of F4TCNQ- in ion pairs shows biexponential decay at 30 and 200 fs, which hints toward the presence of a heterogeneous population with different interaction strengths. To examine the nature of these different types of interactions in solution mixtures, we study the system using molecular dynamics simulations on a fully solvated model employing the generalized Amber force field. We retrieve three dominant interaction modes of F4TCNQ anions with P3HT: side chain, π-stack, and slipped stack. To quantify these interactions, we complement our studies with electronic structure calculations, which reveal the excitonic coupling strengths of ∼ 75 cm-1 for side chain, ∼ 150 cm-1 for π-π-stack, and ∼69 cm-1 for slipped stack. These various interaction modes provide information about the key geometries of the seed structures in precursor solution mixtures, which may determine the final structures in spin-casted films. The insights gained from our study may guide new strategies to control and ultimately tune Coulomb interactions in polymer-dopant solutions.

Citations & impact 


This article has not been cited yet.

Impact metrics

Alternative metrics

Altmetric item for https://www.altmetric.com/details/160986115
Altmetric
Discover the attention surrounding your research
https://www.altmetric.com/details/160986115

Similar Articles 


To arrive at the top five similar articles we use a word-weighted algorithm to compare words from the Title and Abstract of each citation.

Funding 


Funders who supported this work.

Royal Society (1)

  • Grant ID: URF\R1\287