Europe PMC

This website requires cookies, and the limited processing of your personal data in order to function. By using the site you are agreeing to this as outlined in our privacy notice and cookie policy.

Abstract 


Background

Sn1-type alkylating agents methylate the oxygen atom on guanine bases thereby producing O6-methylguanine. This modified base could pair with thymine and cytosine, resulting in the formation of O6-methylguanine/thymine mismatch during DNA replication, recognized by the mismatch repair (MMR) complex, which then initiates the DNA damage response and subsequent apoptotic processes. In our investigation of the molecular mechanisms underlying MMR-dependent apoptosis, we observed FANCD2 modification upon the activity of alkylating agent N-methyl-N-nitrosourea (MNU). This observation led us to hypothesize a relevant role for FANCD2 in the apoptosis induction process.

Methods and results

We generated FANCD2 knockout cells using the CRISPR/Cas9 method in the human cervical cancer cell line HeLa MR. FANCD2-deficient cells exhibited MNU hypersensitivity. Upon MNU exposure, FANCD2 colocalized with the MMR complex. MNU-treated FANCD2 knockout cells displayed severe S phase delay followed by increased G2/M arrest and MMR-dependent apoptotic cell death. Moreover, FANCD2 knockout cells exhibited impaired CtIP and RAD51 recruitment to the damaged chromatin and DNA double-strand break accumulation, indicated by simultaneously observed increased γH2AX signal and 53BP1 foci.

Conclusions

Our data suggest that FANCD2 is crucial for recruiting homologous recombination factors to the sites of the MMR-dependent replication stress to resolve the arrested replication fork and counteract O6-methylguanine-triggered MMR-dependent apoptosis.

References 


Articles referenced by this article (42)


Show 10 more references (10 of 42)

Funding 


Funders who supported this work.

JSPS KAKENHI Grant-in-Aid for Scientific research (2)

JSPS KAKENHI Grant-in-Aid for Scientific research (C) (2)

Promotion and Mutual Aid Corporation for Private Schools of Japan (1)