Europe PMC

This website requires cookies, and the limited processing of your personal data in order to function. By using the site you are agreeing to this as outlined in our privacy notice and cookie policy.

Abstract 


Keratomycosis, caused by pathogenic fungi, is an intractable blinding eye disease. Corneal penetration is an essential requirement for conventional antifungal medications to address keratomycosis. Due to the distinctive anatomical and physiological structure of the cornea, the therapeutic efficacy is hampered by the inadequate penetration capacity. Despite the emergence of diverse antifungal drug delivery systems and advanced antifungal nanomaterials, it has remained challenging to achieve corneal penetration over the past decade. This study fabricates a penetrative ionic organic molecular cage-based nanozyme (OMCzyme) for treating keratomycosis. The synthesis of OMCzyme involved two steps. Initially, the ionic OMC is synthesized by a [2+3] cycloimination reaction of triformylphloroglucinol and 2,3-diaminopropionic acid. Subsequently, OMCzyme is fabricated by coordination of Fe2⁺ with carboxyl anions and phenolic hydroxyls in the organic cage, and further deposition of silver nanoparticles on the surface of OMC-Fe complex. The as-prepared OMCzyme demonstrates excellent water dispersion, peroxidase-like activity, in vitro and in vivo biocompatibility, and corneal penetration. Notably, the nanozyme displays targeted antifungal activity, effectively combating Fusarium solani with negligible cytotoxicity toward human corneal epithelial cells. The hybrid mimic is further demonstrated to be effective in treating keratomycosis in mice, indicating the potential of OMCzyme for curing fungal infectious diseases.

Funding 


Funders who supported this work.

Academic Promotion Programme of Shandong First Medical University (1)

Innovation Project of Shandong Academy of Medical Sciences (1)

National Natural Science Foundation of China (3)

Shandong Provincial Key Research and Development Program (1)

Taishan Scholar Program (2)