Europe PMC

This website requires cookies, and the limited processing of your personal data in order to function. By using the site you are agreeing to this as outlined in our privacy notice and cookie policy.

Abstract 


Sepsis-induced renal damage poses a significant threat, necessitating effective therapeutic strategies. Cannabidiol (CBD) has beneficial effects on tissues and their functions by exhibiting antioxidant and anti-inflammatory effects. This study investigates the potential protective effects of CBD in mitigating lipopolysaccharide (LPS)-induced renal injury in Wistar Albino rats. Thirty-two Wistar Albino rats were categorized into control, LPS (5 mg/kg i.p.), LPS + CBD, and CBD (5 mg/kg i.p.) groups. After the experiment, samples were collected for biochemical, genetic, histopathological, and immunohistochemical analyses. Oxidative stress markers as total oxidant status (TOS) and total antioxidant status (TAS), oxidative stress index (OSI), superoxide dismutase (SOD), glutathione peroxidase (GPx), malondialdehyde (MDA), immune staining as tumor necrosis factor alpha (TNF-α), interleukin-10 (IL-10), caspase-3, gene expressions as nuclear factor erythroid 2-related factor 2 (NRF2), C/EBP homologous protein (CHOP), caspase-9, glucose-regulating protein 78 (GRP78), B-cell leukemia/lymphoma 2 (Bcl2), and tissue histology have been examined. The LPS-exposed group exhibited significant renal abnormalities, mitigated by CBD intervention in the LPS + CBD group. CBD reduced immunoexpression scores for TNF-α, caspase-3, and IL-10. Biochemically, CBD induced a positive shift in the oxidative balance, increasing TAS, SOD, and GPx, while decreasing TOS, OSI, and MDA levels. Genetic analyses highlighted CBD's regulatory impact on NRF2, CHOP, caspase-9, GRP78, and Bcl2, providing molecular insights into its protective role against LPS-induced renal damage. This study underscores CBD as a promising protective agent against sepsis-induced renal damage. Our findings could provide valuable insights into potential therapeutic avenues for addressing renal complications in sepsis.

References 


Articles referenced by this article (46)


Show 10 more references (10 of 46)

Citations & impact 


This article has not been cited yet.

Impact metrics

Alternative metrics

Altmetric item for https://www.altmetric.com/details/166930898
Altmetric
Discover the attention surrounding your research
https://www.altmetric.com/details/166930898

Funding 


Funders who supported this work.

Scientific Research Projects Coordination Unit of Suleyman Demirel University (1)