Europe PMC

This website requires cookies, and the limited processing of your personal data in order to function. By using the site you are agreeing to this as outlined in our privacy notice and cookie policy.

Abstract 


Freshwater ecosystems are being degraded by a wide range of stressors resulting from human activities. Various structural and functional metrics or indices are used to assess the 'health' or condition of riverine ecosystems. It is uncertain if structural or functional metrics or indices respond to different stressors and whether some are more responsive to stressors in general. Here we conducted a multi-study synthesis, similar to a meta-analysis, across four independent outdoor mesocosm experiments involving the manipulation of various chemical stressors - two types of salinity (synthetic marine salts (SMS) and sodium bicarbonate), two insecticides (malathion and sulfoxaflor), increased nutrients (N and P), increased sedimentation and two combinations of stressors (1: malathion, nutrients and sedimentation, 2: sulfoxaflor, nutrients and sedimentation). We compare the effects of these singular or multiple stressors on stream macroinvertebrate community structure, and Eucalyptus camaldulensis leaf litter breakdown rates by microbes and total (microbes and invertebrates). Macroinvertebrate communities were adversely affected by the two sets of multiple stressors, SMS, and both insecticides yet, and in contrast to several published studies, both microbial and total leaf litter was unaffected. Nutrients and sodium bicarbonate, increased breakdown rates or had a unimodal 'Ո' shaped response, with maxima at intermediate levels. Sedimentation by fine sand, however, decreased total leaf litter breakdown, while not affecting microbial leaf litter breakdown. Divergent responses between the effects of stressors on leaf litter breakdown rates that we observed and those in the literature may be caused by multiple mechanisms, including differences between communities, functional redundancy and differences in stressor magnitude and interactions with other (unknown) variables.

Funding 


Funders who supported this work.

Australia-India Strategic Research Fund (1)

Australian Research Council (2)