Europe PMC

This website requires cookies, and the limited processing of your personal data in order to function. By using the site you are agreeing to this as outlined in our privacy notice and cookie policy.

Abstract 


Bacterial keratitis (BK) is a serious ocular infection that can lead to vision impairment or blindness if not treated promptly. Herein, we report the development of a versatile composite hydrogel consisting of silk fibroin and sodium alginate, reinforced by antibiotic-loaded mesoporous silica nanoparticles (MSNs) for the treatment of BK. The drug delivery system is constructed by incorporating vancomycin- and ceftazidime-loaded MSNs into the hydrogel network. The synthesized MSNs were found to be spherical in shape with an average size of about 95 nm. The loading capacities of both drugs were approximately 45% and 43%, for vancomycin and ceftazidime respectively. Moreover, the formulation exhibited a sustained release profile, with 92% of vancomycin and 90% of ceftazidime released over a 24 h period. The cytocompatibility of the drug carrier was also confirmed by MTT assay results. In addition, we performed molecular dynamics (MD) simulations to better reflect the drug-drug and drug-MSN interactions. The results obtained from RMSD, number of contacts, and MSD analyses perfectly corroborated the experimental findings. In brief, the designed drug-MSN@hydrogel could mark an intriguing new chapter in the treatment of BK.

References 


Articles referenced by this article (41)


Show 10 more references (10 of 41)