Europe PMC

This website requires cookies, and the limited processing of your personal data in order to function. By using the site you are agreeing to this as outlined in our privacy notice and cookie policy.

Abstract 


Dispersing ferrofluids in liquid crystals (LCs) produces unique systems which possess magnetic functionality and novel phenomena such as droplet chaining. This work reports the formation of ferrofluid droplet chains facilitated by the topological defects within the LC director field, induced by the dispersed ferrofluid. The translational and rotational motion of these chains could be controlled via application of external magnetic fields. The process of the droplet chain formation in LCs can be stabilized by the addition of surfactants. The magnetic colloidal particles in the ferrofluid located at the interface between the ferrofluid and the LC are arranged so that a boundary layer was formed. The velocities and boundary layer thickness values of ferrofluid droplet chains in nematic 5CB (4-Cyano-4'-pentylbiphenyl) were investigated for varying average droplet sizes and number of droplets in a chain. The creation and behaviour of ferrofluid droplet chains in 5CB with the addition of the surfactant polysorbate 60 (Tween-60) and without, was comparatively investigated. The integration of liquid crystals and ferrofluids along with the incorporation of functional materials facilitates the innovative development of advanced materials for future applications.

Similar Articles 


To arrive at the top five similar articles we use a word-weighted algorithm to compare words from the Title and Abstract of each citation.