Abstract
Dengue virus NS1 protein is a major pathogenic protein. In this study, we examined the role of NS1 in coagulopathy associated with Dengue infection, a common feature of Dengue virus pathogenesis. Since most coagulation factors are produced by hepatocytes and liver is key organ affected during infection, we conducted transcriptomics using total-RNA extracted from Huh7 cells overexpressing NS1 protein. Coagulation factors 1, 5, 10, and 13 were downregulated and was confirmed using quantitative real-time polymerase chain reaction (RT-PCR) and western blot assays in both adherent and non-adherent cell culture systems across all four serotypes of Dengue. We also determined that downregulation of coagulation factors is a result of reduced expression of transcription activator HNF4α. Furthermore, we demonstrated that phosphorylation of extracellular signal-regulated kinase (ERK) leads to HNF4α downregulation and subsequent downregulation of coagulation factors. The downregulation of HNF4α and the downregulation of subsequent coagulation factors were validated in BALB/c mice by hydrodynamic tail vein injection of NS1 expression plasmids. Western blot assays using plasma from Dengue patients indicated that at least two coagulation factors of the common pathway of coagulation cascade are downregulated during the febrile phase, with levels improving toward the convalescent phase. NS1-mediated downregulation of coagulation factors was observed for both intracellular and secreted NS1. The hypothesis was also validated using virus infection assays. Overall, our study highlights the role of NS1 in mediating coagulopathy by modulating the expression of coagulation factors through transcriptional suppression of HNF4α by elevated phosphorylated ERK. This signaling cascade could be targeted for therapeutic intervention against virus-related coagulopathies.