Europe PMC

This website requires cookies, and the limited processing of your personal data in order to function. By using the site you are agreeing to this as outlined in our privacy notice and cookie policy.

Abstract 


Voltage clamping giving step commands reveals a steady-state negative resistance characteristic in the current-voltage curves of Aplysia bursting neurons. This is observed below spike threshold in the unstable range through which the membrane potential slowly oscillates. The negative resistance characteristic underlies this instability and shapes the rapid depolarization-hyper-polarization phase of the cycle. When bursting cells are converted to silent cells (by cooling) the negative resistance is abolished; conversely, when normally silent cells are made to burst (by warming) a negative resistance develops. The presence of negative resistance thus enables the bursting cell to oscillate, whereas its absence precluldes such oscillations.

Citations & impact 


Impact metrics

Jump to Citations

Citations of article over time

Smart citations by scite.ai
Smart citations by scite.ai include citation statements extracted from the full text of the citing article. The number of the statements may be higher than the number of citations provided by EuropePMC if one paper cites another multiple times or lower if scite has not yet processed some of the citing articles.
Explore citation contexts and check if this article has been supported or disputed.
https://scite.ai/reports/10.1126/science.186.4167.932

Supporting
Mentioning
Contrasting
6
68
0

Article citations


Go to all (90) article citations