Europe PMC

This website requires cookies, and the limited processing of your personal data in order to function. By using the site you are agreeing to this as outlined in our privacy notice and cookie policy.

Abstract 


1. Neural activity was recorded from the orbitofrontal cortex (OF) of rats performing an eight-odor discrimination task that included predictable associations between particular odor pairs. A modified linear discriminant analysis was employed to characterize the population response in each trial of the task as a point in an N-dimensional activity space with the firing rate of each cell in the population represented on one of the N dimensions. The ability of the ensemble to discriminate among conditions of a variable was reflected in the tendency of population responses to cluster together in this activity space for repetitions of a given condition. We assessed coding of several variables describing the period of odor sampling, focusing on aspects of current, past, and future events reflected in single-neuron firing patterns, in ensembles composed of 22-138 cells active during the period when the rats sampled the discriminative stimulus in each trial. 2. OF ensembles performed well at discriminating variables with relevance to task demands represented in single-neuron firing patterns, specifically the physical attributes and assigned reward contingency of the current odor as well as the expectation of reward in the following trial that could be inferred from the predictable associations between particular pairs of odors. OF ensembles were able to correctly identify the identity and assigned reward contingency of the current odor in up to 52% (chance = 12.5%) and 99% (chance = 50%) of all trials, respectively, such that the observed behavioral performance required a population of 5,364 odor-responsive cells in the case of odor identity and only 40 cells in the case of valence. Expectations regarding upcoming rewards based on both assigned response contingency and associations between particular pairs of odors were correctly classified in up to 67% (chance = 20%) of all trials such that the observed level of behavioral performance required a population of 3,169 cells. 3. Other information represented in the single-neuron firing patterns, such as the identity and reward contingency of the preceding odor and specific odor-odor associations, was poorly encoded by OF ensembles. Thus neural ensembles in OF may represent only some of the information reflected in single-neuron activity. Stable coding of only the most useful and relevant information by the ensemble might emerge from the tuning properties of single neurons under the influence of the task at hand, producing in the well-trained animal the observed pattern of broad and diverse coding by single neurons and selective, task-relevant coding by neural ensembles in OF.

Citations & impact 


Impact metrics

Jump to Citations

Citations of article over time

Article citations


Go to all (77) article citations

Funding 


Funders who supported this work.

NIA NIH HHS (1)