Europe PMC

This website requires cookies, and the limited processing of your personal data in order to function. By using the site you are agreeing to this as outlined in our privacy notice and cookie policy.

Abstract 


The cytoplasmic insulin receptor substrate-1 (IRS-1), which is multiply phosphorylated in vivo on tyrosine residues, is a known binding protein for the tandem src homology 2 (SH2) domain-containing protein tyrosine phosphatase, SH-PTP2. Eleven phosphotyrosyl (pY) peptides from IRS-1 were screened for allosteric activation of SH-PTP2 phosphatase activity toward phosphorylated, reduced, carboxyamidomethylated, and maleylated-lysozyme. Peptides IRS-1pY895, IRS-1pY1172, and IRS-1pY1222 showed up to 50-fold acceleration of dephosphorylation. Analyses of Arg to Lys mutants in either or both SH2 domains indicate that both the N-terminal (N-SH2) and C-terminal (C-SH2) domains function in allosteric activation. Direct determination by surface plasmon resonance of the dissociation constants between pY peptides and glutathione S-transferase fusions to N-SH2 and C-SH2 domains reveals a 240-fold preference of the N-SH2 domain (compared with the C-SH2 domain) for IRS-1pY1172. The N-SH2 domain prefers IRS-1pY1172 > IRS-1pY895 > IRS-1pY1222, whereas C-SH2 domain prefers IRS-1pY1222 > IRS-1pY895 > IRS-1pY1172. These data suggest that each SH2 domain can bind to a distinct pY sequence of multiply phosphorylated protein substrates such as IRS-1, while activating hydrolysis at a third pY sequence bound in the SH-PTP2 active site. In addition, proteolysis and truncation studies reveal an autoregulatory function for the C-terminal region of SH-PTP2. Limited tryptic cleavage within the C-terminus results in 27-fold activation of protein tyrosine phosphatase activity. The activated tryptic fragment cannot be further activated by pY peptide binding to the SH2 domains indicating that autoregulatory functions of the SH2 domains are dependent on the C-terminal region. These data suggest that multiple levels for control of SH-PTP2 enzymatic activity may exist in vitro and in vivo.

Citations & impact 


Impact metrics

Jump to Citations
Jump to Data

Citations of article over time

Alternative metrics

Altmetric item for https://www.altmetric.com/details/57873714
Altmetric
Discover the attention surrounding your research
https://www.altmetric.com/details/57873714

Smart citations by scite.ai
Smart citations by scite.ai include citation statements extracted from the full text of the citing article. The number of the statements may be higher than the number of citations provided by EuropePMC if one paper cites another multiple times or lower if scite has not yet processed some of the citing articles.
Explore citation contexts and check if this article has been supported or disputed.
https://scite.ai/reports/10.1016/s0021-9258(17)36874-6

Supporting
Mentioning
Contrasting
3
48
0

Article citations


Go to all (97) article citations

Data 


Funding 


Funders who supported this work.

NIDCR NIH HHS (1)

NIGMS NIH HHS (1)

PHS HHS (1)