Europe PMC

This website requires cookies, and the limited processing of your personal data in order to function. By using the site you are agreeing to this as outlined in our privacy notice and cookie policy.

Abstract 


The phosphorylation state of the CD18-chain of beta 2-integrins have been shown not to mediate changes in the avidity of these receptors (i.e., inside-out signaling); however, no alternative functional significance has been proposed. Our study focused on how changes in the phosphorylation state of beta 2-integrin-receptors on HL60-granulocytic cells are related to its intracellular signal transduction properties (i.e., outside-in signaling). Engagement of beta 2-integrins on differentiated HL60 cells induced a transient increase in the cytosolic free Ca2+ concentration and an increased tyrosine phosphorylation of three major protein bands (70, 115, and 140 kDa). These signaling events occurred without any detectable phosphorylation of the CD18-chain. However, a strong phosphorylation of the CD18-chain by preexposure to phorbol myristate acetate (PMA) coincided with an abolishment of both the beta 2-integrin-induced Ca2+ signal and the protein tyrosine phosphorylations. By comparison, none of these effects were exhibited by 4-alpha-PMA, an analogue that does not activate protein kinase C. Thus, phosphorylation of the CD18-chain of beta 2-integrins is not required for outside-in signal transduction by these receptors, but it could constitute an effective mechanism by which the signaling properties of beta 2-integrins can be modulated by exogenous factors and possibly also by intracellular signals induced by other receptors. The fact that both the cytosolic free Ca2+ signal and protein tyrosine phosphorylations were abrogated by PMA suggests an intimate relationship between these two intracellular signals. To explore this possible relationship, we chelated the beta 2-integrin-induced Ca2+ signal with BAPTA. The beta 2-integrin-induced protein tyrosine phosphorylations were blocked by BAPTA but not by abolishment of the Ca2+ signal due to chelation with MAPT or by pretreatment with thapsigargin. These findings and the observation that pretreatment of cells with methyl-2,5-dihydroxycinnamate (a tyrosine kinase inhibitor) blocked the beta 2-integrin- but not the fMet-Leu-Phe-induced Ca2+ signal suggest that beta 2-integrin-induced tyrosine kinase activation occurs prior to and is a prerequisite for the subsequent Ca2+ signal.

Citations & impact 


Impact metrics

Jump to Citations

Citations of article over time

Article citations


Go to all (12) article citations