Europe PMC

This website requires cookies, and the limited processing of your personal data in order to function. By using the site you are agreeing to this as outlined in our privacy notice and cookie policy.

Abstract 


Background

In breast cancer patients, about two thirds of the tumors are estrogen receptor (ER)-positive and one third are ER-negative. The molecular mechanisms leading to the ER-negative phenotype are poorly understood. Nearly all ER-negative and about 40% of ER-positive cancers are resistant to endocrine therapy.

Purpose

In this study, we examined the entire coding region of the ER gene in ER-positive and ER-negative primary breast tumors to determine whether deletions/insertions or point mutations might account for the ER-negative phenotype.

Methods

We amplified exons 1 through 8 of the ER gene in 118 ER-positive and 70 ER-negative primary breast tumors and searched for mutations by single-strand conformation polymorphism analysis, denaturing gradient gel electrophoresis, and DNA sequencing.

Results

Both ER-negative and ER-positive tumors contained neutral polymorphisms in codons 10 [TCT-->TCC (Ser)], 87 [GCG-->GCC (Ala)], 243 [CGC-->CGT (Arg)], 325 [CCC-->CCG (Pro)], and 594 [ACA-->ACG (Thr)]. There was no correlation of any of the polymorphic alleles with the ER phenotype or other clinicopathologic parameters including tumor type, size, grade, or stage. However, the polymorphism in codon 325 showed a strong association with a family history of breast cancer (P = .0005). This association was observed both in premenopausal and postmenopausal patients. Despite extensive searching in exons 1 through 8, we found no deletions/insertions and only two missense mutations in codons 69 [AAC (Asn)-->AAG (Lys)] and 396 [ATG (Met)-->GTG (Val)] of the same ER-negative tumor. Thus, only 1% of the primary breast cancers had point mutations in the ER gene.

Conclusions

In the majority of primary breast cancers, the ER-negative phenotype is not the result of mutations in the coding region of the ER gene, but is due to deficient ER expression at the transcriptional or post-transcriptional level.

Implications

The correlation reported previously, as well as our current findings, suggest that further investigations are warranted to understand the possible linkage of the ER gene locus to hereditary breast cancer.

Citations & impact 


Impact metrics

Jump to Citations
Jump to Data

Citations of article over time

Alternative metrics

Altmetric item for https://www.altmetric.com/details/41947186
Altmetric
Discover the attention surrounding your research
https://www.altmetric.com/details/41947186

Smart citations by scite.ai
Smart citations by scite.ai include citation statements extracted from the full text of the citing article. The number of the statements may be higher than the number of citations provided by EuropePMC if one paper cites another multiple times or lower if scite has not yet processed some of the citing articles.
Explore citation contexts and check if this article has been supported or disputed.
https://scite.ai/reports/10.1093/jnci/87.6.446

Supporting
Mentioning
Contrasting
8
141
3

Article citations


Go to all (158) article citations

Data