Europe PMC

This website requires cookies, and the limited processing of your personal data in order to function. By using the site you are agreeing to this as outlined in our privacy notice and cookie policy.

Abstract 


It is well known that cytoskeleton and karyoskeleton proteins are associated with changes in cell shape and with the rearrangement of the dynamic structures involved in cell division and motility. In higher vertebrates, there are three major skeletal protein groups: microfilaments, microtubules and intermediate filaments, each representing a multigene family. Some of these skeletal proteins are expressed in a temporally- and spatially-specific fashion, and they establish cell-specific cytoplasmic and nucleoplasmic organization during development. Here we report the cDNA cloning of a novel 60 kDa skeletal protein from mouse spermatocytes, termed MNS 1 (meiosis-specific nuclear structural protein), whose computer-predicted protein configuration indicates long alpha-helical coiled-coil domains flanked by non-helical terminal domains. Functional characterization of MNS1 by ectopic expression in culture cells indicated that it is a detergent- and high salt-resistant skeletal protein which is involved in organization of the nuclear or perinuclear architecture. The MNS1 protein is specifically expressed at the pachytene stage during spermatogenesis, so that its function may involve the determination and maintenance of the appropriate nuclear morphology during meiotic prophase.

References 


Articles referenced by this article (55)


Show 10 more references (10 of 55)

Citations & impact 


Impact metrics

Jump to Citations
Jump to Data

Citations of article over time

Article citations


Go to all (18) article citations

Data