Europe PMC

This website requires cookies, and the limited processing of your personal data in order to function. By using the site you are agreeing to this as outlined in our privacy notice and cookie policy.

Abstract 


Inducible gene expression in eukaryotes is mainly controlled by the activity of transcriptional activator proteins, such as NF-kappa B (refs 1-3), a factor activated upon treatment of cells with phorbol esters, lipopolysaccharide, interleukin-1 and tumour necrosis factor-alpha. Activation of NF-kappa B involves release of the inhibitory subunit I kappa B from a cytoplasmic complex with the DNA-binding subunits Rel-A (formerly p65) and p50 (refs 6, 7). Cell-free experiments have suggested that protein kinase C and other kinases transfer phosphoryl groups onto I kappa B causing release of I kappa B and subsequent activation of NF-kappa B. Here we report that I kappa B-alpha (formerly MAD-3) is degraded in cells after stimulation with phorbol ester, interleukin-1, lipopolysaccharide and tumour necrosis factor-alpha, an event coincident with the appearance of active NF-kappa B. Treatment of cells with various protease inhibitors or an antioxidant completely prevented the inducible decay of I kappa B-alpha as well as the activation of NF-kappa B. Our findings suggest that the activation of NF-kappa B relies on an inducible degradation of I kappa B-alpha through a cytoplasmic, chymotrypsin-like protease. In intact cells, phosphorylation of I kappa B-alpha is apparently not sufficient for activation of NF-kappa B.

References 


Articles referenced by this article (30)


Show 10 more references (10 of 30)

Citations & impact 


Impact metrics

Jump to Citations

Citations of article over time

Alternative metrics

Altmetric item for https://www.altmetric.com/details/3632155
Altmetric
Discover the attention surrounding your research
https://www.altmetric.com/details/3632155

Article citations


Go to all (709) article citations