Europe PMC

This website requires cookies, and the limited processing of your personal data in order to function. By using the site you are agreeing to this as outlined in our privacy notice and cookie policy.

Abstract 


Receptor-specific or homologous desensitization of beta 2-adrenergic receptors is thought to be effected via phosphorylation of the receptor by the beta-adrenergic receptor kinase (beta ARK), followed by binding of beta-arrestin. We have generated stably transfected Chinese hamster ovary cell lines overexpressing either of the two regulatory proteins and also expressing low or high levels of beta 2-adrenergic receptors (approximately 80 and approximately 600 fmol/mg of membrane protein). In these cells, we studied the process of desensitization induced by the beta-adrenergic receptor agonist isoproterenol. In cells expressing high levels of beta 2-adrenergic receptors, desensitization to high concentrations of isoproterenol (previously shown to be mediated by both beta ARK and protein kinase A) amounted to approximately 50% in control cells, approximately 80% in beta ARK-overexpressing cells, and approximately 90% in beta-arrestin-overexpressing cells. In cells expressing low levels of beta 2-adrenergic receptors, these values were approximately 50, approximately 60, and approximately 60%, respectively. Desensitization to low concentrations of isoproterenol (previously shown to be essentially protein kinase A-mediated and not receptor-specific, i.e. heterologous) was not affected by overexpression of either beta ARK or beta-arrestin. These data suggest that in cells expressing high levels of beta 2-adrenergic receptors, beta-arrestin and beta ARK become limiting for homologous receptor desensitization. They provide further support for the involvement of these two proteins in the regulation of beta 2-adrenergic receptor function.

Citations & impact 


Impact metrics

Jump to Citations

Citations of article over time

Alternative metrics

Altmetric item for https://www.altmetric.com/details/3432044
Altmetric
Discover the attention surrounding your research
https://www.altmetric.com/details/3432044

Smart citations by scite.ai
Smart citations by scite.ai include citation statements extracted from the full text of the citing article. The number of the statements may be higher than the number of citations provided by EuropePMC if one paper cites another multiple times or lower if scite has not yet processed some of the citing articles.
Explore citation contexts and check if this article has been supported or disputed.
https://scite.ai/reports/10.1016/s0021-9258(18)53678-4

Supporting
Mentioning
Contrasting
2
17
0

Article citations


Go to all (100) article citations