Europe PMC

This website requires cookies, and the limited processing of your personal data in order to function. By using the site you are agreeing to this as outlined in our privacy notice and cookie policy.

Abstract 


Brain injury induces reactive gliosis, characterized by increased expression of glial fibrillary acidic protein (GFAP), astrocyte hypertrophy, and hyperplasia of astrocytes and microglia. One hypothesis tested in this study was whether ganglioside GD3+ glial precursor cells would contribute to macroglial proliferation following injury. Adult rats received a cortical stab wound. Proliferating cells were identified by immunostaining for proliferating cell nuclear antigen (PCNA) and by [3H]-thymidine autoradiography, and cell phenotypes by immunocytochemical staining for GD3, GFAP, ED1 (for reactive microglia) and for Bandeiraea Simplicifolia isolectin-B4 binding (all microglia). Animals were labeled with thymidine at 1,2,3, and 4 days postlesion (dpl) and sacrificed at various times thereafter. Proliferating cells of each phenotype were quantified. A dramatic upregulation of GD3 on ramified microglia was seen in the ipsilateral hemisphere by 2 dpl. Proliferating cells consisted of microglia and fewer astrocytes. Microglia proliferated maximally at 2-3 dpl and one third to one half were GD3+. Astrocytes proliferated maximally at 3-4 dpl, and some were also GD3+. Both ramified and ameboid forms of microglia proliferated and by 4 dpl all GD3+ microglia were ED1+ and vice versa. In the contralateral cortex microglia expressed neither GD3 nor ED1. Thus they acquired these antigens when activated. Neither microglia nor astrocytes that were thymidine-labeled at 2, 3, or 4 dpl changed in number in subsequent days. Most thymidine+ astrocytes were large GFAP+ reactive cells that clearly arose from pre-existing astrocytes, not from GD3+ glial precursors. In this model of injury microglia proliferate earlier and to a much greater extent than astrocytes, they can divide when in ramified form, and GD3 is up-regulated in most reactive microglia and in a subset of reactive astrocytes. We also conclude that microglial proliferation precedes proliferation of invading blood-borne macrophages.

References 


Articles referenced by this article (66)


Show 10 more references (10 of 66)

Citations & impact 


Impact metrics

Jump to Citations

Citations of article over time

Article citations


Go to all (110) article citations

Funding 


Funders who supported this work.

NINDS NIH HHS (2)