Europe PMC

This website requires cookies, and the limited processing of your personal data in order to function. By using the site you are agreeing to this as outlined in our privacy notice and cookie policy.

Abstract 


In Neisseria gonorrhoea (Ngo), the processes of type-4 pilus biogenesis and DNA transformation are functionally linked and play a pivotal role in the life style of this strictly human pathogen. The assembly of pili from its main subunit pilin (PilE) is a prerequisite for gonococcal infection since it allows the first contact to epithelial cells in conjunction with the pilus tip-associated PilC protein. While the components of the pilus and its assembly machinery are either directly or indirectly involved in the transport of DNA across the outer membrane, other factors unrelated to pilus biogenesis appear to facilitate further DNA transfer across the murein layer (ComL, Tpc) and the inner membrane (ComA) before the transforming DNA is rescued in the recipient bacterial chromosome in a RecA-dependent manner. Interestingly, PilE is essential for the first step of transformation, i.e., DNA uptake, and is itself also subject to transformation-mediated phase and antigenic variation. This short-term adaptive mechanism allows Ngo to cope with changing micro-environments in the host as well as to escape the immune response during the course of infection. Given the fact that Ngo has no ecological niche other than man, horizontal genetic exchange is essential for a successful co-evolution with the host. Horizontal exchange gives rise to heterogeneous populations harboring clones which better withstand selective forces within the host. Such extended horizontal exchange is reflected by a high genome plasticity, the existence of mosaic genes and a low linkage disequilibrium of genetic loci within the neisserial population. This led to the concept that rather than regarding individual Neisseria species as independent traits, they comprise a collective of species interconnected via horizontal exchange and relying on a common gene pool.

References 


Articles referenced by this article (93)


Show 10 more references (10 of 93)

Citations & impact 


Impact metrics

Jump to Citations

Citations of article over time

Alternative metrics

Altmetric item for https://www.altmetric.com/details/42132223
Altmetric
Discover the attention surrounding your research
https://www.altmetric.com/details/42132223

Smart citations by scite.ai
Smart citations by scite.ai include citation statements extracted from the full text of the citing article. The number of the statements may be higher than the number of citations provided by EuropePMC if one paper cites another multiple times or lower if scite has not yet processed some of the citing articles.
Explore citation contexts and check if this article has been supported or disputed.
https://scite.ai/reports/10.1016/s0378-1119(97)00038-3

Supporting
Mentioning
Contrasting
8
104
0

Article citations


Go to all (91) article citations