Europe PMC

This website requires cookies, and the limited processing of your personal data in order to function. By using the site you are agreeing to this as outlined in our privacy notice and cookie policy.

Abstract 


Background

There are many ways to represent a molecule's properties, including atomic-connectivity drawings, NMR spectra, and molecular orbital models. Prior methods for predicting the biological activity of compounds have largely depended on these physical representations. Measuring a compound's binding potency against a small reference panel of diverse proteins defines a very different representation of the molecule, which we call an affinity fingerprint. Statistical analysis of such fingerprints provides new insights into aspects of binding interactions that are shared among a wide variety of proteins. These analyses facilitate prediction of the binding properties of these compounds assayed against new proteins.

Results

Affinity fingerprints are reported for 122 structurally-diverse compounds using a reference panel of eight proteins that collectively are able to generate unique fingerprints for about 75% of the small organic compounds tested. Application of multivariate regression techniques to this database enables the creation of computational surrogates to represent new proteins that are surprisingly effective at predicting binding potencies. We illustrate this for two enzymes with no previously recognizable similarity to each other or to any of the reference proteins. Fitting of analogous computational surrogates to four other proteins confirms the generality of the method; when applied to a fingerprinted library of 5000 compounds, several sub-micromolar hits were correctly predicted.

Conclusions

An affinity fingerprint database, which provides a rich source of data defining operational similarities among proteins, can be used to test theories of cryptic homology unexpected from current understanding of protein structure. Practical applications to drug design include efficient pre-screening of large numbers of compounds against target proteins using fingerprint similarities, supplemented by a small number of empirical measurements, to select promising compounds for further study.

Citations & impact 


Impact metrics

Jump to Citations

Citations of article over time

Alternative metrics

Altmetric item for https://www.altmetric.com/details/41666100
Altmetric
Discover the attention surrounding your research
https://www.altmetric.com/details/41666100

Smart citations by scite.ai
Smart citations by scite.ai include citation statements extracted from the full text of the citing article. The number of the statements may be higher than the number of citations provided by EuropePMC if one paper cites another multiple times or lower if scite has not yet processed some of the citing articles.
Explore citation contexts and check if this article has been supported or disputed.
https://scite.ai/reports/10.1016/1074-5521(95)90283-x

Supporting
Mentioning
Contrasting
1
174
0

Article citations


Go to all (73) article citations