Europe PMC

This website requires cookies, and the limited processing of your personal data in order to function. By using the site you are agreeing to this as outlined in our privacy notice and cookie policy.

Abstract 


The purpose of this study was to measure the cumulated activity and absorbed dose in organs after intravenous administration of 2-[F-18]fluoro-2-deoxy-D-glucose (18F-FDG) using whole-body positron emission tomography (PET) and magnetic resonance imaging (MRI). Whole-body dynamic emission scans for 18F-FDG were performed in six normal volunteers after transmission scans. The total activity of a source organ was obtained from the activity concentration of the organ measured by whole-body PET and the volume of that organ measured by whole-body T1-weighted MRI. The cumulated activity of each source organ was calculated from the time-activity curve. Absorbed doses to the individuals were estimated by the MIRD (medical internal radiation dosimetry) method using S-values adjusted to the individuals. Another calculation of cumulated activities and absorbed doses was performed using the organ volumes from the MIRD phantom and the "Japanese reference man" to investigate the discrepancy of actual individual results against the phantom results. The cumulated activities of 18 source organs were calculated, and absorbed doses of 27 target organs estimated. Among the target organs, bladder wall, brain and kidney received the highest doses for the above three sets of organ volumes. Using measured individual organ volumes, the average absorbed doses for those organs were found to be 3.1x10(-1), 3.7x10(-2) and 2.8x10(-2) mGy/MBq, respectively. The mean effective doses in this study for individuals of average body weight (64.5 kg) and the MIRD phantom of 70 kg were the same, i.e. 2.9x10(-2) mSv/MBq, while for the Japanese reference man of 60 kg the effective dose was 2.1x10(-2) mSv/MBq. The results for measured organ volumes derived from MRI were comparable to those obtained for organ volumes from the MIRD phantom. Although this study considered 18F-FDG, combined use of whole-body PET and MRI might be quite effective for improving the accuracy of estimations of the cumulated activity and absorbed dose of positron-labelled radiopharmaceuticals.

Citations & impact 


Impact metrics

Jump to Citations

Citations of article over time

Smart citations by scite.ai
Smart citations by scite.ai include citation statements extracted from the full text of the citing article. The number of the statements may be higher than the number of citations provided by EuropePMC if one paper cites another multiple times or lower if scite has not yet processed some of the citing articles.
Explore citation contexts and check if this article has been supported or disputed.
https://scite.ai/reports/10.1007/s002590050257

Supporting
Mentioning
Contrasting
4
81
3

Article citations


Go to all (58) article citations