Europe PMC

This website requires cookies, and the limited processing of your personal data in order to function. By using the site you are agreeing to this as outlined in our privacy notice and cookie policy.

Abstract 


It is currently unclear whether aging alters the perfusion of active muscles during large-muscle dynamic exercise in humans. To study this issue, direct measurements of leg blood flow (femoral vein thermodilution) and systemic arterial pressure during submaximal cycle ergometry (70, 140, and 210 W) were compared between six younger (Y; 22-30 yr) and six older (O; 55-68 yr) chronically endurance-trained men. Whole body O2 uptake, ventilation, and arterial and femoral venous samples for blood-gas, catecholamine, and lactate determinations were also obtained. Training duration (min/day), estimated leg muscle mass (dual-energy X-ray absorptiometry; Y, 21.5 +/- 1.2 vs. O, 19.9 +/- 0.9 kg), and blood hemoglobin concentration (Y, 14.9 +/- 0.4 vs. O, 14.7 +/- 0.2 g/dl) did not significantly differ (P > 0.05) between groups. Leg blood flow, leg vascular conductance, and femoral venous O2 saturation were approximately 20-30% lower in the older men at each work rate (all P < 0.05), despite similar levels of whole body O2 uptake. At 210 W, leg norepinephrine spillover rates and femoral venous lactate concentrations were more than twofold higher in the older men. Pulmonary ventilation was also higher in the older men at 140 (+24%) and 210 (+39%) W. These results indicate that leg blood flow and vascular conductance during cycle ergometer exercise are significantly lower in older endurance-trained men in comparison to their younger counterparts. The mechanisms responsible for this phenomenon and the extent to which they operate in other groups of older subjects deserve further attention.

Citations & impact 


Impact metrics

Jump to Citations

Citations of article over time

Alternative metrics

Altmetric item for https://www.altmetric.com/details/154705594
Altmetric
Discover the attention surrounding your research
https://www.altmetric.com/details/154705594

Smart citations by scite.ai
Smart citations by scite.ai include citation statements extracted from the full text of the citing article. The number of the statements may be higher than the number of citations provided by EuropePMC if one paper cites another multiple times or lower if scite has not yet processed some of the citing articles.
Explore citation contexts and check if this article has been supported or disputed.
https://scite.ai/reports/10.1152/jappl.1998.85.1.68

Supporting
Mentioning
Contrasting
15
191
3

Article citations


Go to all (147) article citations

Funding 


Funders who supported this work.

NCRR NIH HHS (1)

NHLBI NIH HHS (1)

NINDS NIH HHS (1)