Abstract
We have developed a generalizable ‘smart molecular diagnostic’ capable of accurate point-of-care (POC) detection of variable nucleic acid targets. Our one-pot isothermal assay relies on multiplex execution of four loop-mediated isothermal amplification reactions, with primers that are degenerate and redundant, thereby increasing the breadth of targets while reducing the probability of amplification failure. An easy-to-read visual answer is computed directly by a multi-input Boolean OR gate signal transducer that uses degenerate strand exchange probes to assess any combination of amplicons. We demonstrate our platform by using the same assay to detect divergent Asian and African lineages of the evolving Zika virus (ZIKV), while maintaining selectivity against non-target viruses. Direct analysis of biological specimens proved possible, with 20 virions / µl being directly detected in human saliva within 90 minutes, and crudely macerated ZIKV-infected Aedes aegypti mosquitoes being identified with 100% specificity and sensitivity. The ease-of-use with minimal instrumentation, broad programmability, and built-in fail-safe reliability make our smart molecular diagnostic attractive for POC use.
Full text links
Read article at publisher's site: https://doi.org/10.1101/424440
Read article for free, from open access legal sources, via Unpaywall: https://www.biorxiv.org/content/biorxiv/early/2018/09/23/424440.full.pdf