Supplementary Information

Cerebral organoids transplantation repairs infarcted cortex and restores impaired function after stroke

Shi-Ying Cao^{1,3}, Di Yang¹, Zhen-Quan Huang¹, Yu-Hui Lin¹, Hai-Yin Wu¹, Lei Chang¹, Chun-Xia Luo¹, Yun Xu³, Yan Liu^{2*}, Dong-Ya Zhu^{1,2*}

¹Department of Pharmacology, School of Pharmacy, Nanjing Medical University,

Nanjing, 211166, China

²Institution of Stem Cells and Neuroregeneration, Nanjing Medical University, Nanjing,

211166, China

³Department of Neurology, Affiliated Drum Tower Hospital of Nanjing University,

Medical School, Nanjing 210008, China

Dong-Ya Zhu: dyzhu@njmu.edu.cn

*Corresponding authors: dyzhu@njmu.edu.cn or yanliu@njmu.edu.cn

Supplementary Figure 1. Generation of human cerebral organoids in vitro.

(a) Schematic showing the differentiation, timeline of immunostaining, transduction with LV and transplantation of hPSCs-derived human cerebral organoids, example images of each stage were shown. Scale bar, 250 µm. (b) Schematic illustrating the laminar organization and cellular composition of human cerebral organoids. (c-f) Representative images showing cerebral organoids stained with the dorsal forebrain progenitor marker PAX6 and neural stem cells marker Nestin (c), VZ marker SOX2 and intermediate progenitor marker TBR2 (d), the apical marker protein kinase C- λ (PKC- λ) and immature neurons marker doublecortin (DCX) (e), and oRGs marker HOPX and neural cell adhesion molecule marker NCAM (f) on d 23 after differentiation. (g and h) Representative images showing cerebral organoids stained with mature neuron marker NeuN and proliferation marker Ki67 (g), forebrain marker FOXG1 and neuron marker Tuj-1 (h) on d 40 after differentiation. (i-k) Representative images showing cerebral organoids stained with deep-layer markers TBR1, FOXP2, and CTIP2, and up-layer markers BRN2 and SATB2 on d 100 after differentiation. (I-n) On d 190 after differentiation, cerebral organoids were mainly composed of glutamatergic neurons (Glutamate/MAP2), with only a few GABAergic neurons (GABA) and astrocytes (GFAP). Scale bar, c-n, 25 µm.

Supplementary Figure 2. Behavioral modifications after photothrombotic stroke in the forelimb motor cortex or parietal cortex.

(a) Representative of TTC-stained slices. Scale bar, 2 µm. (b) Infarct volume of mice subjected to photothrombotic stroke in the forelimb motor cortex or parietal cortex (*t*-test, P = 0.089). (c) Left-foot faults relative to total steps taken in the grid-walking test (Oneway ANOVA, $F_{2,27} = 246.3$, ***P < 0.001). (d) Asymmetry index of forelimbs in the cylinder test (One-way ANOVA, $F_{2,27} = 144.3$, **P = 0.009, ***P < 0.001). (e) Touch latency (One-way ANOVA, $F_{2,27} = 19.35$, ***P < 0.001) in the adhesive-removal test. (f) Remove latency (One-way ANOVA, $F_{2,27} = 59.49$, ***P < 0.001) in the adhesive-removal test. n = 10 animals for each group. In b-f, data were presented as mean \pm standard deviation.

Supplementary Figure 3. The cell composition of cortical organoids differentiated for 50 days in vitro.

(a-h) Representative images showing cerebral organoids derived from hESCs stained with the forebrain marker FOXG1(a), neuron marker Tuj-1(b), dorsal forebrain

progenitor marker PAX6 (c), deep-layer (V-VI) cortical marker TBR1(d) and CTIP2 (e), GABAergic neuron marker GAD67 (f), cell proliferation marker Ki67 (g) and mature neuron marker NeuN (h) on 50 d after differentiation in vitro. Scale bar, a-h, 50 µm. (i) Bar graph showing the proportion of FOXG1-, Tuj-1-, PAX6-, TBR1-, CTIP2-, GAD67-, Ki67-, and NeuN-positive cells on 50 d after differentiation. n=18 organoids. More than 10,000 cells from random fields were manually counted in each condition. (j) Bar graph showing the proportion of FOXG1-, PAX6-, TBR1-, CTIP2-, cells derived from IMR-90-4 on 50 d after differentiation. *n*=10 organoids. More than 5,000 cells from random fields were manually counted in each condition. (k-n) Representative images showing cerebral organoids derived from IMR-90-4 stained with the forebrain marker FOXG1(k), dorsal forebrain progenitor marker PAX6 (I), deep-layer (V-VI) cortical marker TBR1 (m) and CTIP2 (n) on 50 d after differentiation. n=10 organoids. More than 5,000 cells from random fields were manually counted in each condition. Scale bar, k-n, 50 µm. In i and j, data were presented as mean \pm standard deviation.

Supplementary Figure 4. Immunostaining showing the repair of infarcted cavity on 60 d after transplantation of one or three organoids.

(a) Representative images showing the repair of infarcted cavity on d 60 after transplantation of one organoid. Scale bar, 10 μ m. (b) Diagram showing the site of one organoid transplant. (c) Representative images showing the repair of infarcted cavity on d 60 after transplantation of three organoids. Scale bar, 10 μ m.

Supplementary Figure 5. Comparison of cell comparison of cortical organoids cultured in vitro for 95 days with cultured in vitro for 50 days and then transplanted into brain for 45 days.

(**a-b**) Representative images showing the neuronal progenitor markers SOX2, dorsal forebrain progenitor marker PAX6, and intermediate progenitor marker TBR2 in the organoids cultured in vitro for 50 days and then transplanted into brain for 45 days (**a**) or in the organoids cultured in vitro for 95 days (**b**). Scale bar, **a-b**, 50 μ m. (**c**) Bar graph showing cell populations of two kinds of organoids. n = 6 animals for **a** and n = 18 organoids for **b**. More than 10,000 cells from random fields were manually counted in each condition. In **c**, data were presented as mean \pm standard deviation.

Supplementary Figure 6. The survival and differentiation of cortical organoids after

transplantation into the cortex of stroke mice.

(a) Schematic showing the immunostaining timeline after hESCs-derived human cerebral

organoids transplantation. (b-n) Representative images showing grafts stained with dorsal forebrain progenitor marker PAX6 (b) neuronal progenitor markers SOX2 (c), intermediate progenitor marker TBR2 (d), deep-layer (V-VI) cortical marker TBR1, FOXP2 and CTIP2 and (e-g), upper layers (II-IV) cortical marker SATB2 (h), mature neuron marker NeuN (i), cell proliferation marker Ki67 (j). (k-n) Representative images showing GFP⁺ transplants stained with upper layers (II-IV) cortical marker BRN2 (k), pyramidal neurons marker CaMKII (I), GABAergic neuron marker GAD67 (m) and human astrocytes marker STEM123 (n). Scale bar, b-n, 50 µm. (o) Immunostaining for GFP⁺ graft 150 d in stroke mice transplanted with human cerebral organoids. Scale bar, 150 µm. (p-q) Bar graph showing the proportion of PAX6-, SOX2-, TBR2-, TBR1-, FOXP2-, CTIP2-, SATB2-, Ki67-, NeuN- (p) and BRN2-, CAMKII-, STEM123-, GAD67- (q) positive cells after differentiation. n = 6 animals. More than 10,000 cells from random fields were manually counted in each condition. In **p** and **q**, data were presented as mean \pm standard deviation.

Supplementary Figure 7. Differentiation of human cerebral organoids on d 180 after transplantation into the cortex of stroke mice.

(a-i) Representative images showing deep-layer (V-VI) cortical marker TBR1 and CTIP2(a and b), upper layers (II-IV) cortical marker SATB2 (c), mature neuron marker NeuN

(d), immature neuron marker DCX (e), cell proliferation marker Ki67 (f), astrocyte marker GFAP (g), oligodendrocyte marker OLIG2 (h) and GABAergic neuron marker GABA (i) in the grafted human cerebral organoids (HN⁺ cells) 180 d after transplantation. Scale bar, **a-i**, 50 μ m. (j) Bar graph showing the proportion of TBR1-, CTIP2-, SATB2-, NeuN-, DCX-, Ki67-, OLIG2-, GFAP- and GABA-positive cells in the grafts 180 d after transplantation. (k) Representative images showing HN-positive and HN-negative OLIG2 cells on d 180 after transplantation. Scale bar, 50 μ m. (l) Bar graph showing the proportion of OLIG2 derived from host and grafted organoids. *n* = 6 animals. More than 11,000 cells from random fields were manually counted in each condition. In **j** and **l**, data were presented as mean ± standard deviation.

Supplementary Figure 8. Dispersed cerebral organoids cells transplantation cannot repair infarcted tissue on d 150 after transplantation.

Imaging showing the survival of dispersed organoids cells after transplantation into the junction area between the infarct core and peri-infarct zone in (a) animal A and (b) animal B on d 180 after transplantation (scale bar, 200 μ m). a1 and a2: high-magnification images of GFP⁺ fibers from the selected areas 1 and 2 in image a respectively (scale bar, 50 μ m). a3: A high-magnification image from the selected area 3 in image a (scale bar, 50 μ m). a4: High-magnification images from the selected area in image a3 (scale bar, 5 μ m). b1: High-magnification images from the selected area in image b (scale bar, 50 μ m).

Supplementary Figure 9. Permanent loss of brain tissue within the infarct core on d 180 after stroke.

1: Image showing glial scar at the border of the infarct (scale bar, 200 μ m). 2: Image showing infarcted cavity (scale bar, 200 μ m). 3: High-magnification image from the selected area in image 2 (scale bar, 50 μ m). 4: High-magnification images from the selected area in image 3 (scale bar, 5 μ m).

Supplementary Figure 10. Immunostaining for coronal section at 30 d after AAVsyn-hChR2(E123A)-mCherry microinjection.

(a) Schematic showing the timeline of transplantation, AAV microinjection, and immunostaining. (b) A representative image showing mCherry⁺ cells co-labeled with HN (yellow arrow) or not co-labeled with HN (green arrow). The yellow and green boxed areas in b were shown in high magnification in b1 and b2 respectively. scale bar, 200 μ m (b) and 50 μ m (b1, b2). (c) Bar graph showing the proportion of mCherry⁺ cells derived from host (HN-negative) and grafted organoids (HN-positive), data were presented as mean ± standard deviation.

Supplementary Figure 11. Host neurons receive synaptic input from the grafted organoids neurons.

(a) Design of the experiments for b-h. Human cerebral organoids were generated from H9-CAG-hChR2-EYFP cell line. (b) A representative image showing that EYFP⁺ cells are co-labeled with HN (left, scale bar, 20 µm) and high magnification images from a selected area in the leftward image (right, scale bar, 5 µm). (c) Diagram (left) showing the strategy to evoke APs in the organoids neuron and APs traces (right) evoked by blue photo stimuli pulses (470 nm, 10 mW/mm², 5 ms duration) of various frequencies on the ChR2-EYFP-expressing organoids neuron. (d) A representative image showing EYFP⁺ fibers extending to NeuN⁺/HN⁻ host neurons (left, scale bar, 20 μ m) and high magnification images from a selected area in the leftward image (right, scale bar, 5 µm). (e) Diagram (upper) showing the strategy to test whether host neurons receive synaptic input from organoids neurons and images (lower) showing whole-cell patch-clamp recordings from host neurons (GFP⁻). Black dotted lines indicate the placement of the patch-clamp electrode. Scale bar, 20 μ m. (f) Representative traces of PSCs evoked by 1 or 3 blue photo stimuli pulses at a holding potential of -65 mV. (g) Representative traces of PSCs evoked by 1 blue photo stimuli pulse with or without kynurenic acid. In f and g, n = 19 neurons from 6 mice, in which, 6 neurons were responsive to photostimulation. (h) Representative images showing the host neuron stained by biocytin, in which, biocytin⁺ neuron was EYFP- and HN-negative. Biocytin was filled into the neuron through electrode after patch-clamp recording (left, scale bar, 10 µm) and high magnification

images from a selected area in the leftward image (right, scale bar, 5 $\mu m).$

Supplementary Figure 12. Survival percentage and body weight in NOD-SCID mice.

(a) Survival percentage of NOD-SCID mice in three groups. (b) Body weight of NOD-SCID mice in three groups, mice were excluded when mortality occurred, data were presented as mean \pm standard deviation.

Supplementary Figure 13. Systemic injection of CNO does not affect sensorimotor behaviors.

(a) Left-foot faults relative to total steps taken in the grid-walking test (One-way ANOVA, $F_{3,48} = 116.6$, P > 0.05, between groups). (b) Asymmetry index of forelimbs in the cylinder test (One-way ANOVA, $F_{3,48} = 37.33$, P > 0.05, between groups). (c) Touch latency (One-way ANOVA, $F_{3,48} = 16.08$, P > 0.05, between groups) in the adhesive-removal test. (d) Remove latency (One-way ANOVA, $F_{3,48} = 27.62$, P > 0.05, between groups) in the adhesive-removal test. n = 13 animals for each group. In a-d, data were presented as mean \pm standard deviation.

REAGENT or RESOURCE	SOURCE	IDENTIFIER
Antibodies		
Mouse monoclonal anti-BRN2	Santa Cruz	Cat# sc-393324;
Marrie and the start CAMZI	Biotechnology	RRID: AB_2737347
Mouse monocional anti-CANIKII	Cell Signaling	Cat# 50049 RRID: AR 2721006
Rat monoclonal anti-CTIP?	Abcam	Cat# $ab18465$
	11000111	RRID: AB 2064130
Rabbit polyclonal anti-DCX	Cell Signaling	Cat# 4604;
	Technology	RRID: AB_561007
Rabbit polyclonal anti-FOXP2	Abcam	Cat# ab16046;
		RRID: AB_2107107
Rabbit polyclonal anti-FOXG1	Abcam	Cat# ab18259;
	C' 411.1	RRID: AB_/32415
Rabbit polyclonal anti-GABA	Sigma-Aldrich	Cat# A2052;
Mouse monoclonal anti GAD67	Moral	$\begin{array}{c} \text{RRID: AB}_{477032} \\ \text{Cot# MAP5406} \end{array}$
Wouse monocional anti-GAD07	MEICK	$\mathbf{RRID} \mathbf{AR} 2278725$
Rabbit polyclonal anti-GFAP	Agilent	Cat# 70334:
		RRID: AB 10013382
Rabbit polyclonal anti-GFP	Millipore	Cat# AB3080P;
1 5	1	RRID: AB 2630379
Chicken polyclonal anti-GFP	Millipore	Cat# AB16901;
		RRID: AB_90890
Rabbit polyclonal anti-GLUTAMATE	Sigma-Aldrich	Cat# G6642;
	N (11)	RRID: AB_259946
Mouse monoclonal anti-Human Nuclei	Millipore	Cat# MAB1281;
Dabbit nakusland anti HODY	Ciana Alduiah	$RRID: AB_94090$
Rabbit polycional anti-HOPA	Sigma-Aldrich	Cal# $\Pi PA050180$; PPID: AP 10602770
Rabbit polyclonal anti-Ki67	Thermo Fisher	Cat# $PA5-19462$
Rubble polycional and Rib?	Scientific	RRID: AB 10981523
Mouse monoclonal anti-MAP2	Sigma-Aldrich	Cat# M1406:
	0	RRID: AB 477171
Rabbit polyclonal anti-NeuN	Millipore	Cat# ABN778;
		RRID: AB_10807945
Mouse monoclonal anti-NeuN	Millipore	Cat# MAB377;
	~ ~	RRID: AB_2298772
Goat polyclonal anti-Nestin	Santa Cruz	Cat# sc-21247;
Mayor managland anti Uyuman NCAM	Biotechnology	RRID: AB_650014
Mouse monocional anti-Human NCAM	Biotechnology	Cal # SC-100; $RRID: AR 627128$
Rabbit polyclonal anti-PAX6	Covance	Cat $\#$ PRB-278P·
Rabbit porycional anti-17770	Covance	RRID: AB 291612
Mouse monoclonal anti-PKC- λ	BD Biosciences	Cat# 610207;
		RRID: AB 397606
Mouse monoclonal anti-Human SATB2	Abcam	Cat# ab51502;
		RRID: AB_882455

Supplementary Table 1. Key resources table

Rabbit monoclonal anti-SATB2	Abcam	Cat# ab92446;
Goat polyclonal anti-Human SOX2	R and D Systems	RRID: AB_10563678
Sour polycionar and Trainan SOA2	R and D Systems	RRID: AB 355110
Mouse monoclonal anti-STEM121	Takara Bio	Cat# AB-121-U-050;
		RRID: AB_2632385
Mouse monoclonal anti-STEM123	Takara Bio	Cat# Y40420;
		RRID: AB_2833249
Mouse monoclonal anti-Synaptophysin	Thermo Fisher	Cat# 14-6525-80;
	Scientific	RRID: AB_10670424
Rabbit polyclonal anti-TBR1	Abcam	Cat# ab31940; RRID:
Dahhit nalvalanal anti TDD2	Abaam	$AB_{2200219}$
Rabbit polycional anti-1BR2	Abcam	Cal# $a025545$;
Mouse monoclonal anti Tui 1	Sigma Aldrich	Cat# T8660:
Nouse monocional anti-1 uj-1	Signa-Alunch	RRID: AR 477590
Rabbit polyclonal anti-Tui-1	Covance	Cat# PRB-435P-100:
racon porjoional and Taj T		RRID: AB 291637
Donkey anti-Mouse IgG (H+L) Highly	Thermo Fisher	Cat# A-21202;
Cross-Adsorbed Secondary Antibody,	Scientific	RRID: AB 141607
Alexa Fluor 488		_
Donkey anti-Rabbit IgG (H+L) Highly	Thermo Fisher	Cat# A-21206;
Cross-Adsorbed Secondary Antibody,	Scientific	RRID: AB_2535792
Alexa Fluor 488		
Donkey anti Goat IgG (H+I) Highly	Thermo Fisher	Cat# A 11055
Cross-Adsorbed Secondary Antibody	Scientific	RRID: AR 2534102
Alexa Fluor 488	Scientific	KKID. AD_2554102
Goat anti-Chicken IgY (H+L) Highly	Thermo Fisher	Cat# A-11039;
Cross-Adsorbed Secondary Antibody,	Scientific	RRID: AB_2534096
Alexa Fluor 488		
Donkov onti Mouso IcC (IIII) Hickly	Thomas Eighon	Cot# 10026.
Cross Adsorbed Secondary Antibody	Solentific	Cal# A10050; PDID: AP 2534012
Alexa Eluor 546	Scientific	KKID. AD_2334012
Donkey anti-Rabbit IgG (H+L) Highly	Thermo Fisher	Cat# A10040;
Cross-Adsorbed Secondary Antibody,	Scientific	RRID: AB_2534016
Alexa Fluor 546		
Donkey anti-Rat IgG (H+L) Highly	Thermo Fisher	Cat# A-21209;
Cross-Adsorbed Secondary Antibody,	Scientific	RRID: AB_2535795
Alexa Fluor 394		
Donkey anti-Goat IgG (H+L) Highly	Thermo Fisher	Cat# A-11056:
Cross-Adsorbed Secondary Antibody.	Scientific	RRID: AB 142628
Alexa Fluor 546		

Donkey anti-Mouse IgG (H+L) Highly Cross-Adsorbed Secondary Antibody, Alexa Fluor 647	Thermo Fisher Scientific	Cat# A-31571; RRID: AB_162542
Goat anti-Chicken IgG (H+L) Highly Cross-Adsorbed Secondary Antibody, Alexa Fluor 647	Thermo Fisher Scientific	Cat# A21449; RRID: AB_1500594
Hoechst 33342	Cell Signaling Technology	Cat# 4082; RRID: AB_10626776
Bacterial and Virus Strains		
AAV-syn-hChR2(E123A)-mCherry	GeneChem	N/A
rLV-EF1a-hM4D(Gi)-mCherry-WRPE	BrainVTA	Cat# LV-0378
LV-EF1a-EGFP	Nantong Gadgetzan	N/A
Chemicals, Peptides, and Recombina	nt Proteins	
B27 Supplement	Life Technologies	Cat# 17504044
Biocytin	Sigma-Aldrich	Cat# 576-19-2
Choline chloride	Sigma-Aldrich	Cat# C7527-100G
Cesium-gluconate	Hello-bio	Cat# HB4822
CsCl	Sigma-Aldrich	Cat# 7647-17-8
Donkey Serum	Milipore	Cat# S30-KC
Dispase	Gibco	Cat# 17105041
DMEM/F12	Life Technologies	Cat# C11330
DMH-1	Tocris	Cat# 4126
DMSO	Sigma-Aldrich	Cat# D8418
Essential 8 Basal medium	Life	Cat# A14666SA
Essential 8 Supplement	Life Technologies	Cat# A1517001
EDTA	Lonza	Cat# 17-711E
EGTA	Tocris	Cat# 2807
FBS	Life Technologies	Cat# 0099-141
Glucose	Diamond	Cat# A1001880500
HEPES	BBI Lifescience	Cat# A600264-0250
Kynurenic acid	Tocris	Cat# 223

K-Gluconate	Sigma-Aldrich	Cat# G4500		
Mg-ATP	Sigma-Aldrich	Cat# 74804-12-9		
Na-ATP	Sigma-Aldrich	Cat# A6419		
Na ₂ -ATP	Sigma-Aldrich	Cat# 34369-07-8		
NaHCO ₃	BBI Life Science	Cat# A610482-0500		
Non-essential amino acids solution (NEAA)	Gibco	Cat# 11140		
N2	Gibco	Cat# 17105041		
PBS tablets	Medicago	Cat# 09-9400-100		
QX-314	Tocris	Cat# 2313		
Rose Bengal	Sigma-Aldrich	Cat# 330000-5G		
Rock inhibitor	Stem cell	Cat# 72304		
SB431542	Tocris	Cat# 1614		
Sodium-L-ascorbate	Sigma-Aldrich	Cat# A7631-25G		
Sodium-Pyruvate	Sigma-Aldrich	Cat# P5280-25G		
Sucrose	BIOFROXX	Cat# 1245GR500		
TrypLE	Thermo Fisher	Cat# 12604013		
2% 2,3,5-triphenyl tetrazolium chloride	Scientific Sigma-Aldrich	Cat# T8877		
Vitronectin	Life Technologies	Cat# A14700		
Experimental Models: Cell Lines				
H9 CAG-ChR2-EYFP	A gift from Dr. Su-Chun	N/A		
hESCs (line H9)	WiCell	Cat# 16-W0060		
hiPSCs (IMR90-4)	WiCell	Cat# 17-W0063		
Experimental Models: Organisms/Strains				
Mouse: NOD-Prkdcem26Cd52/Gpt (NOD-SCID)	GemPharmatech	Cat# T001492;		
Software and Algorithms				
Adobe Illustrator CS6	Adobe Systems	https://www.adobe.com/products /illustrator.html; RRID: SCR_010279		

Adobe Photoshop CS6	Adobe Systems	https://www.adobe.com; RRID: SCR_014199
GraphPad Prism 7 software	GraphPad	https://www.graphpad.com ; RRID: SCR_002798
IBM SPSS Statistics 22 software	IBM SPSS Statistics	https://www.ibm.com/products/ spss-statistics RRID: SCR_019096
ImageJ	ImageJ	https://imagej.nih.gov/ij; RRID: SCR_003070
Mini Analysis Program 6.0	Synaptosoft, Inc.	http://www.synaptosoft.com/Mi- niAnalysis ; RRID: SCR_002184
pClamp 10	Molecular Devices	http://mdc.custhelp.com; RRID: SCR_011323
ZEN2009 Light Edition	Carl Zeiss	https://www.zeiss.com; RRID: SCR_013672
Other		
borosilicate Glass	Sutter Instrument	Cat# BF150-86-10
borosilicate Glass Capillaries	World Precision Instruments	Cat# TW100-4

Supplementary Table 2. Summary table showing the replicates number of organoids and mice used for immunostaining, behavioral, and electrophysiological experiments

Experiment	Figure number	Group	Replicates number	Organoids origin
Assessment of infarct area	Supplementary Fig. 2a-b	PT-1	mice number, n=10	N/A
		PT-2		
		NIM + sham	mice number, <i>n</i> =9	N/A
	Fig. 5a-d	NIM + stroke	mice number, <i>n</i> =12	IN/A
		Organoids + stroke	mice number, <i>n</i> =14	hESCs (line H9)
		Sham treated with vehicle	mice number, <i>n</i> =9	N/A
	Fig. 5h-k	Stroke treated with vehicle	mice number, <i>n</i> =12	N/A
		Organoids + stroke treated with vehicle	mice number, <i>n</i> =14	hiPSCs
Behavioral test		Organoids + stroke treated with CNO	mice number, <i>n</i> =14	(IIVIR-90- 4)
	Supplementary Fig. 2c-f	Sham	mice number, n=10	N/A
		PT-1		N/A
		PT-2		N/A
	Supplementary Fig. 13a-d	NIM + sham treated with vehicle	mice number, <i>n</i> =13	N/A
		NIM + sham treated with CNO		N/A
		NIM + stroke treated with vehicle		N/A
		NIM + stroke treated with CNO		N/A
Immunostaining for organoids in vitro		FOXG1 ⁺ /HO	Organoids, n=18	
	Supplementary Fig. 3a-h	Tuj-1 ⁺ /HO		1530
		PAX6 ⁺ /HO		
		TBR1 ⁺ /HO		hESCs (line H9)
		CTIP2 ⁺ /HO		(line II))
		GAD67 ⁺ /HO		
		Ki67 ⁺ /HO		

		NeuN ⁺ /HO		
	Supplementary Fig. 3k-n	FOXG1 ⁺ /HO	Organoids, n=10	
		PAX6 ⁺ /HO		hiPSCs
		TBR1 ⁺ /HO		(IMR-90- 4)
		CTIP2 ⁺ /HO		.,
	Supplementary Fig. 5b	SOX2 ⁺ /HO	Organoids, n=18	1766
		PAX6 ⁺ /HO		hESCs
		TBR2 ⁺ /HO		(IIIIC 117)
		HN ⁺ /HO		
		NeuN ⁺ /HO		
		GFAP ⁺ /HO		1500
	Fig. 2f-h	NeuN ⁺ HN ⁺ /NeuN ⁺		hESCs (line H9)
		NeuN ⁺ HN ⁻ /NeuN ⁺		(IIIIC 117)
		GFAP ⁺ HN ⁺ /GFAP ⁺		
		GFAP ⁺ HN ⁻ /GFAP ⁺		
	Fig. 5f	mCherry ⁺ HN ⁺ /HN ⁺	brain slices from 6 mice	hiPSCs (IMR-90- 4)
		SOX2 ⁺ /HN ⁺		
	Supplementary Fig. 5a	PAX6 ⁺ /HN ⁺		
		TBR2 ⁺ /HN ⁺		
		SOX2 ⁺ /HN ⁺		
т ,••	Supplementary Fig. 6	PAX6 ⁺ /HN ⁺		
for		TBR2 ⁺ /HN ⁺		
organoids in		TBR1 ⁺ /HN ⁺		
vivo		FOXP2 ⁺ / HN ⁺		
		CTIP2 ⁺ / HN ⁺		
		SATB2 ⁺ / HN ⁺		
		Ki67 ⁺ /HN ⁺		hESCs
		NeuN ⁺ /HN ⁺		(line H9)
		BRN2 ⁺ /GFP ⁺		
		CAMKII ⁺ / GFP ⁺		
		STEM123 ⁺ / GFP ⁺		
		GAD67 ⁺ /GFP ⁺		
	Supplementary Fig. 7	TBR1 ⁺ /HN ⁺		
		CTIP2 ⁺ / HN ⁺		
		SATB2 ⁺ /HN ⁺		
		NeuN ⁺ /HN ⁺		
		DCX ⁺ /HN ⁺		

		Ki67 ⁺ /HN ⁺		
		GFAP ⁺ /HN ⁺		
		OLIG2 ⁺ /HN ⁺	-	
		GABA ⁺ /HN ⁺		
		OLIG2 ⁺ HN ⁺ /OLIG2 ⁺	-	
		OLIG2 ⁺ HN ⁻ /OLIG2 ⁺		
		mCherry ⁺ HN ⁺		
	Supplementary	/mCherry ⁺		IMR-90-
	Fig. 10	mCherry ⁺ HN ⁻ /mCherry ⁺		4)
		NIM + sham	mice number, n=10	N/A
Survival percent	Supplementary Fig. 12a	NIM + stroke	mice number, n=12	N/A
		Organoids + stroke	mice number, <i>n</i> =15	hESCs (line H9)
	Supplementary Fig. 12b	NIM + sham	mice number, <i>n</i> =9	N/A
Body weight		NIM + stroke	mice number, n=12	N/A
		Organoids + stroke	mice number, n=14	hESCs (line H9)
	Fig. 21	Number of APs evoked	n = 13 neurons from 5 mice	, , , , , , , , , , , , , , , , , , ,
	Fig. 2m	sPSCs	n = 34 neurons from 7 mice	
	Fig. 4f		n = 13 neurons from 5 mice	hESCs
Electrophysiolo gy	Fig. 4g	hChR2-mCherry mediated sPSCs recordings	6 recorded neurons were responsive to photo- stimulation.	(line H9)
	Fig. 4i	LFP (contralateral motor cortex)	n = 7 slices from 3 animals	
	Fig. 4j	LFP (ipsilateral striatum)	n = 6 slices from 3 animals	hESCs
	Supplementary Fig. 11f	ChR2-EYFP mediated sPSCs recordings	n = 19 neurons from 6 mice,	(H9-CAG- ChR2- EVEP)
	Supplementary Fig. 11g		6 neurons were responsive to photo- stimulation.	LIFF)