Supplementary Information

Is Post-Translational Folding More Efficient Than Refolding from a Denatured State: A Computational Study

Quyen V. Vu¹, Daniel A. Nissley², Yang Jiang³, Edward P. O'Brien^{3, 4, 5*} and Mai Suan Li^{1,6*}

¹Institute of Physics, Polish Academy of Sciences; Al. Lotnikow 32/46, 02-668 Warsaw, Poland.

²Department of Statistics, University of Oxford, Oxford, OX1 3LB, UK.

³Department of Chemistry, Pennsylvania State University, University Park, PA 16802, USA.

⁴Bioinformatics and Genomics Graduate Program, The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA.

⁵Institute for Computational and Data Sciences, Pennsylvania State University, University Park, PA 16802, USA.

⁶Institute for Computational Sciences and Technology; Quang Trung Software City, Tan Chanh Hiep Ward, District 12, Ho Chi Minh City, Vietnam.

* To whom correspondence should be addressed: epo2@psu.edu, masli@ifpan.edu.pl

Supplementary Figures

Figure S1: Secondary structure elements in DHFR, CAT-III, and DDLB. α -helices and β -sheets are labeled as A and S. Noted that the secondary structures are determined by Stride and we only show segments with more than 4 residues.

Figure S2: Fraction of native contacts versus time computed from folded trajectories of DHFR protein (un-normalized). (Left): ABD domain, (right) DLD domain. The blue-dashed line presents the threshold for each domain determined from the native simulation.

Figure S3: Representative structures of the metastable states from clustering of DHFR. The all-atom backmapped structures are presented with (Q, G) values. Entanglement in structure (if exists) is highlighted with the loop (red color) and is closed by the native contact (yellow sphere and yellow bond), and the threading segment is colored in blue. The metastable state indices and the (Q, G) values of the most probable microstates in that metastable state are shown below each structure.

State 0 (0.2, 0)

State 1 (0.35, 0.04)

State 2 (0.36, 0)

(0.5, 0.04)

State 4 (0.53, 0.09)

State 5 (0.62, 0.09)

State 6 (0.67, 0.12)

State 7

(0.74, 0)

State 8 (0.8, 0.19)

Figure S4: Representative structures of the metastable states from clustering of CAT-III. The all-atom backmapped structures are presented with (Q, G) values. Entanglement in structure (if exist) is highlighted with the loop (red color) and is closed by the native contact (yellow sphere and yellow bond), and the threading segment is colored in blue. The metastable state indices and the (Q, G) values of the most probable microstates in that metastable state are shown below each structure.

Figure S5: Representative structures of the metastable states from clustering of DDLB. The all-atom backmapped structures are presented with (Q, G) values. Entanglement in structure (if exist) is highlighted with the loop (red color) and is closed by the native contact (yellow sphere and yellow bond), and the threading segment is colored in blue. The metastable state indices and the (Q, G) values of the most probable microstates in that metastable state are shown below each structure.

Supplementary Tables

Table S1: Wild-type mRNA template for three enzymes in this study.

Protein	mRNA template - Wildtype translation								
DHFR	AUGAUCAGUCUGAUUGCGGCGUUAGCGGUAGAUCGCGUUAUCGGCAUGGAAAACG CCAUGCCGUGGAACCUGCCUGCCGAUCUCGCCUGGUUUAAACGCAACACCUUAAA UAAACCCGUGAUUAUGGGCCGCCAUACCUGGGAAUCAAUC								

CAT-III	AUGAACUAUACAAAAUUUGAUGUAAAAAAUUGGGUUCGCCGUGAGCAUUUUGAGUU UUAUCGGCAUCGUUUACCAUGUGGUUUUAGCUUAACAAGCAAAAUUGAUAUCACGA CGUUAAAAAAGUCAUUGGAUGAUUCAGCGUAUAAGUUUUAUCCGGUAAUGAUCUAU CUGAUUGCUCAGGCCGUGAAUCAAUUUGAUGAGUUGAGAAUGGCGAUAAAAGAUG AUGAAUUGAUCGUAUGGGAUUCAGUCGACCCACAAUUCACCGUAUUCCAUCAAGAA ACAGAGACAUUUUCAGCACUGAGUUGCCCAUACUCAUCCGAUAUUGAUCAAUUUAU GGUGAAUUAUUUAUCGGUAAUGGAACGUUAUAAAAGUGAUACCAAGUUAUUUCCUC AAGGGGUAACACCAGAAAAUCAUUUAAAUAUUUCAGCAUUACCUUGGGUUAAUUUU GAUAGCUUUAAUUUAA
DDLB	AUGACUGAUAAAAUCGCGGUCCUGUUGGGUGGGACCUCCGCUGAGCGGGAAGUUU CUCUGAAUUCUGGCGCAGCGGUGUUAGCCGGACUGCGUGAAGGCGGUAUUGACG CGUAUCCUGUCGACCCGAAAGAAGUCGACGUGACGCAACUGAAGUCGAUGGGCUU UCAGAAAGUGUUUAUCGCGCUACACGGUCGCGGCGGUGAAGAUGGUACGCUGCAG GGGAUGCUCGAGCUGAUGGGCUUGCCUUAUACCGGAAGCGGAGUGAUGGCAUCU GCGCUUUCAAUGGAUAAACUACGCAGCAAACUUCUAUGGCAAGGUGCCGGUUUAC CGGUCGCGCCGUGGGUAGCGUUAACCCGCGCAGAGUUUGAAAAAGGCCUGAGCGA UAAGCAGUUAGCAGAAAUUUCUGCUCUGGGUUUGCCGGUUAUCGUUAAGCCGAGC CGCGAAGGUUCCAGUGUGGGAAUGUCAAAAGUAGUAGCAGAAAAUGCUCUACAAGA UGCAUUAAGAUUGGCAUUUCAGCACGAUGAAGAAGUAUUGAUUG

Protein	Pair		#native contacts	Pair		#native contacts	Pair		#native contacts
DHFR	C1	S ₅ -S ₆	30	C6	S ₁ -A ₄	3	C11	A ₁ -S ₂	2
	C2	S ₄ -S ₆	25	C7	S ₂ -A ₂	3	C12	S ₂ -A ₃	2
	C3	S ₁ -S ₄	21	C8	S ₂ -A ₄	3	C13	A ₃ -A ₄	2
	C4	S ₂ -S ₃	16	C9	A_2 - S_3	3			
	C5	S ₃ -A ₃	7	C10	S ₁ -A ₁	2			
CAT-III	C1	S ₁ -S ₈	32	C6	S ₆ -S ₇	12	C11	A ₃ -S ₄	4
	C2	S ₄ -S ₅	22	C7	A ₃ -A ₅	9	C12	A ₃ -A ₄	4
	C3	S ₄ -S ₆	16	C8	A ₂ -S ₈	7	C13	A ₃ -S ₆	2
	C4	S ₇ -S ₈	14	C9	A ₂ -A ₅	7	C14	S ₅ -A ₄	2
	C5	S ₂ -S ₃	13	C10	S ₂ -A ₅	4			
DDLB	C1	S ₇ -S ₉	26	C11	S ₅ -A ₇	6	C21	A ₄ -S ₁₀	3
	C2	$S_{9}-S_{10}$	24	C12	A ₃ -S ₁₀	5	C22	S ₄ -A ₅	3
	C3	S ₄ -S ₆	16	C13	S ₄ -A ₆	5	C23	A ₆ -S ₆	3
	C4	S_5-S_6	16	C14	S ₇ -A ₁₀	5	C24	A ₅ -S ₆	2
	C5	A ₁ -A ₁₁	15	C15	A ₁₀ -A ₁₁	5	C25	S ₇ -A ₉	2
	C6	S ₇ -S ₈	13	C16	S ₁ -A ₁	4	C26	S ₈ -A ₁₀	2
	C7	S_1 - S_2	12	C17	A ₂ -A ₃	4	C27	A ₉ -S ₉	2
	C8	S ₁ -S ₃	12	C18	A ₃ -A ₄	4	C28	A ₉ -S ₁₀	2
	C9	A_1 - S_2	7	C19	A ₇ -S ₆	4			
	C10	A ₄ -A ₉	6	C20	A ₃ -A ₉	3			

Table S2: Structural definitions as the pair of secondary structures (shown in Figure S1) in the native state of proteins.

_